DOI QR코드

DOI QR Code

Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites

  • Ayatollahi, M.R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Naeemi, A.R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Alishahi, E. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
  • Received : 2014.07.23
  • Accepted : 2015.10.05
  • Published : 2015.10.25

Abstract

The impact behavior of epoxy-based nanocomposites reinforced with carbon nano tube (CNT), carbon nano fiber (CNF) and mixed contents of these nanoparticles was investigated using Izod impact test. The results showed that while the impact strength of nanocomposites containing 1 wt% of CNT and 1 wt% of CNF increased 19% and 13% respectively, addition of mixed contents of these nanofillers (0.5-0.5 wt%) demonstrated higher improvement (21%) in the impact resistance. The trend of the results is explained on the basis of different fracture mechanisms of nanocomposites. Furthermore, the fracture surface of specimens and the dispersion state of nanoenhancers have been studied using scanning electron microscopy (SEM) photographs.

Keywords

References

  1. Al-Saleh, M.H. and Sundararaj, U. (2011), "Review of the mechanical properties of carbon nanofiber/ polymer composites", Compos. Part A, Appl. Sci. Manuf., 42, 2126-2142. https://doi.org/10.1016/j.compositesa.2011.08.005
  2. Alishahi, E., Shadlou, S., Doagou, R.S. and Ayatollahi, M.R. (2013), "Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites", Macromol. Mater. Eng., 298, 670-678. https://doi.org/10.1002/mame.201200123
  3. Ayatollahi, M.R., Alishahi, E. and Shadlou, S. (2011a), "Mechanical Behavior of Nanodiamond/Epoxy Nanocomposites", Int. J. Fract., 170, 95-100. https://doi.org/10.1007/s10704-011-9600-3
  4. Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011b), "Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites", Mater. Sci. Eng.: A, 528, 6173-6178. https://doi.org/10.1016/j.msea.2011.04.082
  5. Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011c), "Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions", Mater. Des., 32, 2115-2124. https://doi.org/10.1016/j.matdes.2010.11.034
  6. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M. and Chitsazzadeh, M. (2011d), "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites", Polym. Test., 30, 548-556. https://doi.org/10.1016/j.polymertesting.2011.04.008
  7. Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011e), "Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites", Eng. Fract. Mech., 78, 2620-2632. https://doi.org/10.1016/j.engfracmech.2011.06.021
  8. Bortz, D.R., Merino, C. and Martin-Gullon, I. (2011), "Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system", Compos. Sci. Tech., 71, 31-38. https://doi.org/10.1016/j.compscitech.2010.09.015
  9. Chen, J., Kinloch, A.J., Sprenger, S. and Taylor, A.C. (2013), "The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles", Polym., 54, 4276-4289. https://doi.org/10.1016/j.polymer.2013.06.009
  10. Deng, S., Zhang, J., Ye, L. and Wu, J. (2008), "Toughening epoxies with halloysite nanotubes", Polym., 49, 5119-5127. https://doi.org/10.1016/j.polymer.2008.09.027
  11. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
  12. Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 39, 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009
  13. Hedia, H.S., Allie, L., Ganguli, S. and Aglan, H. (2006), "The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints", Eng. Fract. Mech., 73, 1826-1832. https://doi.org/10.1016/j.engfracmech.2006.02.013
  14. Hirsch, A. and Vostrowsky, O. (2005), Functionalization of Carbon Nanotubes, Springer Berlin Heidelberg.
  15. Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. and Sprenger, S. (2010), "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles", Polym., 51, 6284-6294. https://doi.org/10.1016/j.polymer.2010.10.048
  16. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C. and Sprenger, S. (2007), "Toughening mechanisms of nanoparticle-modified epoxy polymers", Polym., 48, 530-541. https://doi.org/10.1016/j.polymer.2006.11.038
  17. Mimura, K., Ito, H. and Fujioka, H. (2001), "Toughening of epoxy resin modified with in situ polymerized thermoplastic polymers", Polym., 9223-9233.
  18. Kinloch, A.J. and Taylor, A.C. (2006), "The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites", J. Mater. Sci., 41, 3271-3297. https://doi.org/10.1007/s10853-005-5472-0
  19. Laurenzi, S., Pastore, R., Giannini, G. and Marchetti, M. (2013), "Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy", Compos. Struct., 99, 62-68. https://doi.org/10.1016/j.compstruct.2012.12.002
  20. Lee, J. and Yee, A.F. (2001), "Inorganic particle toughening II toughening mechanisms of glass bead filled epoxies", Polym., 42, 589-597. https://doi.org/10.1016/S0032-3861(00)00398-0
  21. Liang, Y.L. and Pearson, R.A. (2010), "The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs)", Polym., 51, 4880-4890. https://doi.org/10.1016/j.polymer.2010.08.052
  22. Liu, L. and Wagner, H.D. (2005), "Rubbery and glassy epoxy resins reinforced with carbon nanotubes", Compos. Sci. Tech., 65, 1861-1868. https://doi.org/10.1016/j.compscitech.2005.04.002
  23. Luo, D., Wang, W.X. and Takao, Y. (2007), "Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites", Compos. Sci. Tech., 67, 2947-2958. https://doi.org/10.1016/j.compscitech.2007.05.005
  24. Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010a), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48, 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028
  25. Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010b), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review", Compos. Part A: Appl. Sci. Manuf., 41, 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  26. Miyagawa, H. and Drzal, L.T. (2005), "Effect of oxygen plasma treatment on mechanical properties of vapor grown carbon fiber nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1440-1448. https://doi.org/10.1016/j.compositesa.2005.01.027
  27. Roy, N., Sengupta, R. and Bhowmick, A.K. (2012), "Modifications of carbon for polymer composites and nanocomposites", Prog. Polym. Sci., 37, 781-819. https://doi.org/10.1016/j.progpolymsci.2012.02.002
  28. Seshadri, M. and Saigal, S. (2007), "Crack Bridging in Polymer Nanocomposites", J. Eng. Mech., 133, 911-918. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(911)
  29. Shadlou, S., Alishahi, E. and Ayatollahi, M.R. (2013), "Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements", Compos. Struct., 95, 577-581. https://doi.org/10.1016/j.compstruct.2012.08.002
  30. Song, Y.S. and Youn, J.R. (2005), "Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites", Carbon, 43, 1378-1385. https://doi.org/10.1016/j.carbon.2005.01.007
  31. Sui, G., Zhong, W.H., Liu, M.C. and Wu, P.H. (2009), "Enhancing mechanical properties of an epoxy resin using "liquid nano-reinforcements", Mater. Sci. Eng. A, 512, 139-142. https://doi.org/10.1016/j.msea.2009.01.023
  32. Wagner, H.D., Ajayan, P.M. and Schulte, K. (2013), "Nanocomposite toughness from a pull-out mechanism", Compos. Sci. Tech., 83, 27-31. https://doi.org/10.1016/j.compscitech.2013.04.017
  33. Wang, X., Jin, J. and Song, M. (2013), "An investigation of the mechanism of graphene toughening epoxy", Carbon, 65, 324-333. https://doi.org/10.1016/j.carbon.2013.08.032
  34. Wetzel, B., Haupert, F. and Qiu Zhang, M. (2003), "Epoxy nanocomposites with high mechanical and tribological performance", Compos. Sci. Tech., 63, 2055-2067. https://doi.org/10.1016/S0266-3538(03)00115-5
  35. Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73, 2375-2398. https://doi.org/10.1016/j.engfracmech.2006.05.018
  36. Zhang, H. and Zhang, Z. (2007), "Impact behaviour of polypropylene filled with multi-walled carbon nanotubes", Eur. Polym. J., 43, 3197-3207. https://doi.org/10.1016/j.eurpolymj.2007.05.010
  37. Zhang, W., Picu, R.C. and Koratkar, N. (2008), "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19, 285709. https://doi.org/10.1088/0957-4484/19/28/285709
  38. Zhao, S., Schadler, L., Duncan, R., Hillborg, H. and Auletta, T. (2008a), "Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy", Compos. Sci. Tech., 68, 2965-2975. https://doi.org/10.1016/j.compscitech.2008.01.009
  39. Zhou, Y., Pervin, F., Lewis, L. and Jeelani, S. (2008b), "Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes", Mater. Sci. Eng.: A, 475, 157-65. https://doi.org/10.1016/j.msea.2007.04.043

Cited by

  1. Finite element and micromechanical modeling for investigating effective material properties of polymer–matrix nanocomposites with microfiber, reinforced by CNT arrays vol.8, pp.3, 2016, https://doi.org/10.1007/s40091-016-0132-y
  2. Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects vol.62, pp.5, 2015, https://doi.org/10.12989/sem.2017.62.5.551