Acknowledgement
Supported by : Iran's National Elites Foundation (INEF)
References
- Aliabadi, M.H. (1991), Rooke DP Numerical fracture mechanics, Computational Mechanics Publications, Southampton, U.K.
- Ameen, M., Raghu Prasad, B.K. and Gopalakrishnan, A.R. (2011), "Modeling of concrete cracking-A hybrid technique of using displacement discontinuity element method and direct boundary element method", Eng. Anal. Bound. Elem., 35, 1054-1059. https://doi.org/10.1016/j.enganabound.2011.03.009
- Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min. Sci., 48, 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
- Barr, B. (1987), "The fracture characteristics of FRC materials in shear, fiber reinforced concrete: properties and applications", SP-105, Editado por S. P. Shah y B. Batson, American Concrete Institute.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-77.
- Bowie, O.L. (1973), Solution of Plane Crack Problems by Mapping Technique, In Methods of Analysis and Solution of Crack Problems, Ed. G.C. Sih, Lehigh University, Bethlehem, Pennsylvania.
- Broek, D. (1989), The Practical Use of Fracture Mechanics, 4th Edition, Kluwer Academic Publishers, Netherland.
- Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Trans. Nonferrous Met. Soc. China, 22, 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
- Chuang, T. and Mai, Y. (1998), "Flexural behavior of strain-softening solids", Int. J. Solid. Struct., 25, 1427-1443.
- Crouch, S.L. (1957a), "Analysis of stresses and displacements around underground excavations: an application of the Displacement Discontinuity Method", University of Minnesota Geomechanics Report, Minneapolis, Minnesota.
- Crouch, S.L. and Starfield, A. (1983), Boundary Element Methods in Solid Mechanics, Allen and Unwin, London.
- Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78, 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
- Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under loading and transverse shear", J. Fluid. Eng., 85, 519-527.
-
Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2011), "A study of the failure mechanism of planar non-persistent open joints using
$PFC^{2D}$ ", Rock Mech. Rock Eng., 45, 677-693. - Haeri, H., Shahriar K., Marji, M.F. and Moarefvand, P. (2014a), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67c, 20-28.
- Haeri, H., Khaloo, A. and Marji, M.F. (2014b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mechanica Sinica, DOI:10.1007/s10409-015-0436-3.
- Haeri, H. (2015), Coupled Experimental-Numerical Fracture Mechanics, Lambert Academic Press, Germany.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015a), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Latin Am. J. Solid. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
- Haeri, H., Shahriar K., Marji, M.F. and Moarefvand, P. (2015b), "On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geoscie., 8, 2841-2852. https://doi.org/10.1007/s12517-014-1290-5
- Hillerborg, A. (1980), "Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete", Int. J. Cement Compos., 2, 177-190.
- Hussian, M.A., Pu, E.L. and Underwood, J.H. (1974) "Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis", ASTM STP 560. American Society for Testing and Materials, 2-28.
- Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24, 361.
- Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164, 83-102. https://doi.org/10.1007/s10704-010-9457-x
- Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech., 111, 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and non-uniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011
- Kaplan, M.F. (1961), "Crack propagation and the fracture of concrete", ACI J., 58, 591-610.
- Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
- Leonel, E.D., Chateauneuf, A. and Venturini, W.S. (2012), "Probabilistic crack growth analyses using a boundary element model: Applications in linear elastic fracture and fatigue problems", Eng. Anal. Bound. Elem., 36, 944-959. https://doi.org/10.1016/j.enganabound.2011.12.016
- Lei, J., Wang, Y.S., Huang, Y., Yang, Q. and Zhang, C. (2012), "Dynamic crack propagation in matrix involving inclusions by a time-domain BEM", Eng. Anal. Bound. Elem., 36, 651-57. https://doi.org/10.1016/j.enganabound.2011.12.005
- Liu, H. (2003), "Numerical modelling of the rock fracture process under mechanical loading", Thesis, LULEA university of technology, Sweden.
- Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
- Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
- Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26, 525-534.
- Ruiz, G. and Carmona, R.J. (2006a), "Experimental study on the influence of the shape of the cross-section and the rebar arrangement on the fracture of LRC beams", Mater. Struct., 39, 343-352.
- Ruiz, G., Carmona J.R. and Cendon, D.A. (2006b), "Propagation of a cohesive crack through adherent reinforcement layers", Comput. Meth. Appl. Mech. Eng., 195, 7237-7248. https://doi.org/10.1016/j.cma.2005.01.029
- Sanford, R.J. (2003), Principles of Fracture Mechanics, Pearson Education, hIC., Upper Saddle River, New Jersey.
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical Simulation of the Process of Fracture of Echelon Rock Joints", Rock. Mech. Rock. Eng., 47, 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Savilahti, T., Nordlund, E. and Stephansson, O. (1990), "Shear box testing and modeling of joint bridge", Proceedings of international symposium on shear box testing and modeling of joint bridge Rock Joints, Norway.
- Shah, S., Swartz, S.Y. and Ouyang, C. (1995), Fracture Mechanics of concrete: Applications of Fracture Mechanics to Concrete, Rock, and Other Quasi-Brittle Materials, John Wiley & Sons, New York.
- Shou, K.J. (2000a), "A novel superposition scheme to obtain fundamental boundary element solutions in multi-layered elastic media", Int. J. Numer. Anal. Meth. Geomech., 24(10), 795-814. https://doi.org/10.1002/1096-9853(20000825)24:10<795::AID-NAG99>3.0.CO;2-L
- Shen, B. and Stephansson, O. (1994), "Modification of the G-criterion for crack propagation subjected to compression", Eng. Fract. Mech., 47, 177-189. https://doi.org/10.1016/0013-7944(94)90219-4
- Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10, 305-321. https://doi.org/10.1007/BF00035493
- Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws- Part II: Numerical approach", Int. J. Rock Mech. Min. Sci., 38, 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
- Tavara, L., Mantic, V., Graciani, E. and Paris, F. (2011), "BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model", Eng. Anal. Bound. Elem., 35, 207-222. https://doi.org/10.1016/j.enganabound.2010.08.006
- Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78, 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
- Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
- Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
- Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock Fracture Mechanics, Principles, Design and Applications, Elsevier, Netherlands.
- Wong, R.H.C., Leung, W.L. and Wang, S.W. (2001), Shear strength study on rock-like models containing arrayed open joints, Eds. Elsworth, D., Tinucci, J.P., Heasley, K.A., Rock mechanics in the national interest. Swets & Zeitlinger Lisse, Leiden.
- Yang, Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76, 1833-1845S https://doi.org/10.1016/j.engfracmech.2009.04.005
- Yang, S.Q. (2011), "Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation breakage", Eng. Fract. Mech., 78, 3059-3081. https://doi.org/10.1016/j.engfracmech.2011.09.002
- Yoshihara, H. (2013), "Initiation and propagation fracture toughness of solid wood under the mixed Mode I/II condition examined by mixed-mode bending test", Eng. Fract. Mech., 104, 1-15. https://doi.org/10.1016/j.engfracmech.2013.03.023
- Zeng, G.,Yang, X., Yina, A. and Bai, F. (2014), "Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam", Constr. Build. Mater., 55, 323-332. https://doi.org/10.1016/j.conbuildmat.2014.01.058
Cited by
- Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.881
- The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.201
- Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation vol.52, pp.4, 2016, https://doi.org/10.1134/S1062739116041046
- A review of experimental and numerical investigations about crack propagation vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.235
- Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC) vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.039
- The effect of micro pore on the characteristics of crack tip plastic zone in concrete vol.17, pp.1, 2016, https://doi.org/10.12989/cac.2016.17.1.107
- Experimental and Numerical Investigation of the Center-Cracked Horseshoe Disk Method for Determining the Mode I Fracture Toughness of Rock-Like Material vol.51, pp.1, 2018, https://doi.org/10.1007/s00603-017-1310-3
- Suggesting a new testing device for determination of tensile strength of concrete vol.60, pp.6, 2016, https://doi.org/10.12989/sem.2016.60.6.939
- Experimental study of shear behavior of planar nonpersistent joint vol.17, pp.5, 2016, https://doi.org/10.12989/cac.2016.17.5.639
- The effect of non-persistent joints on sliding direction of rock slopes vol.17, pp.6, 2016, https://doi.org/10.12989/cac.2016.17.6.723
- Cracking Behaviors of Rock-Like Specimens Containing Two Sets of Preexisting Cross Flaws under Uniaxial Compression vol.47, pp.2, 2018, https://doi.org/10.1520/JTE20170358
- Numerical simulation of hydraulic fracturing in circular holes vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1135
- Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2015, https://doi.org/10.12989/cac.2017.19.1.099
- Direct and indirect methods for determination of mode I fracture toughness using PFC2D vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.039
- Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.057
- The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.431
- Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D vol.20, pp.4, 2015, https://doi.org/10.12989/cac.2017.20.4.429
- A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.343
- Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2015, https://doi.org/10.12989/sem.2018.66.4.445
- Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2015, https://doi.org/10.12989/sem.2018.66.4.453
- Experimental and numerical simulating of the crack separation on the tensile strength of concrete vol.66, pp.5, 2015, https://doi.org/10.12989/sem.2018.66.5.569
- Direct shear testing of brittle material samples with non-persistent cracks vol.15, pp.4, 2015, https://doi.org/10.12989/gae.2018.15.4.927
- Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.493
- Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.505
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2015, https://doi.org/10.12989/cac.2018.22.4.373
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2015, https://doi.org/10.12989/cac.2018.22.4.373
- PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2015, https://doi.org/10.12989/sem.2018.68.4.497
- Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D vol.68, pp.4, 2015, https://doi.org/10.12989/sem.2018.68.4.507
- Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.611
- Experimental investigating the properties of fiber reinforced concrete by combining different fibers vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.509
- Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239