참고문헌
- Agelaki S, Spiliotaki M, Markomanolaki H, et al (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8, 1470-7. https://doi.org/10.4161/cbt.8.15.8939
- Bhowmick NA, Neilson EG, Moses HL (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332-7. https://doi.org/10.1038/nature03096
- Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al 2010. The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9, 1960-71. https://doi.org/10.4161/cc.9.10.11601
- Bucci M, Gratton JP, Rudic RD, et al (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med, 6, 1362-7. https://doi.org/10.1038/82176
- Burke P, Schooler K, Wiley HS (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell, 12, 1897-1910. https://doi.org/10.1091/mbc.12.6.1897
- Cai C, Chen J (2004). Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int J Cancer, 111, 522-9. https://doi.org/10.1002/ijc.20300
- Carroll JS, Meyer CA, Song J, et al (2006). Genome-wide analysis of estrogen receptor binding sites. Nat Genet, 38, 1289-97. https://doi.org/10.1038/ng1901
- Castello-Cros R, Bonuccelli G, Molchansky A, et al (2011). Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 10, 2021-34. https://doi.org/10.4161/cc.10.12.16002
- Cirri P, Chiarugi P (2011). Cancer associated fibroblasts : the dark side of the coin. Am J Cancer Res, 1, 482-97.
- Clemons M, Goss P (2001). Estrogen and the risk of breast cancer. NEJM, 344, 276-285. https://doi.org/10.1056/NEJM200101253440407
- Cohen AW, Razani B, Wang XB, et al (2003). Caveolin-1- deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol, 285, C222-5. https://doi.org/10.1152/ajpcell.00006.2003
- Dong X, Mao S, Wen H (2013). Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review). Biomed Rep, 1, 833-6.
- El-Gendi SM, Mostafa MF, El-Gendi AM, et al (2012). Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome. Pathol Oncol Res, 18, 459-69. https://doi.org/10.1007/s12253-011-9469-5
- Elsheikh SE, Green AR, Rakha EA, et al (2008). Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer, 99, 327-34. https://doi.org/10.1038/sj.bjc.6604463
- Van den Eynden GG, Van Laere SJ, Van der Auwera I, et al (2006).Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat, 95, 219-28. https://doi.org/10.1007/s10549-005-9002-1
- Fielding PE, Chau P, Liu D, Spencer TA, Fielding CJ, (2004). Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry, 43, 2578-86. https://doi.org/10.1021/bi035442c
- Finn RS, Dering J, Ginther C (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 105, 319-26. https://doi.org/10.1007/s10549-006-9463-x
- Finn RS, Aleshin A, Dering J, et al (2013). Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology, 57, 1838-46. https://doi.org/10.1002/hep.26223
- Fiucci G, Ravid D, Reich R, Liscovitch M, et al (2002). Caveolin-1 inhibits anchorage-independent growth anoikis and invasiveness in MFC-7 human breast cancer cells. Oncogene, 21, 2365-2375. https://doi.org/10.1038/sj.onc.1205300
- Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T (2004). Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int, 66, 1794-04. https://doi.org/10.1111/j.1523-1755.2004.00954.x
-
Giusiano S, Cochet C, Filhol O, et al (2011). Protein kinase
$CK2{\alpha}$ subunit over-expression correlates with metastatic risk in breast carcinomas: Quantitative immunohistochemistry in tissue microarrays. Eur J Cancer, 47, 792-801. https://doi.org/10.1016/j.ejca.2010.11.028 - Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006). Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett, 580, 5268-74. https://doi.org/10.1016/j.febslet.2006.08.071
- Goetz JG, Minguet S, Navarro-Lerida I, et al (2011). Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell, 146, 148-63. https://doi.org/10.1016/j.cell.2011.05.040
- Gupta R, Toufaily C, Annabi B (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107, 188-202. https://doi.org/10.1016/j.biochi.2014.09.010
- Hayashi K, Matsuda S, Machida K, et al (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res, 61, 2361-64.
- Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33, 486-90.
- Jezierska-Drutel A, Rosenzweig SA, Neumann CA, et al (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res, 119, 107-25. https://doi.org/10.1016/B978-0-12-407190-2.00003-4
- Joglekar M, Elbazanti WO, Weitzman MD, Lehma H, van Golen KL (2015). Caveolin-1 mediates inflamatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem, 116, 923-33. https://doi.org/10.1002/jcb.25025
- Kiss AL (2012). Caveolae and the regulation of endocytosis. Adv Exp Med Biol, 729, 14-28. https://doi.org/10.1007/978-1-4614-1222-9_2
- Koo JS, Park S, Kim SI, Lee S, Park BW (2011). The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol, 32, 787-99. https://doi.org/10.1007/s13277-011-0181-6
- Lajoie P, Nabi IR (2010). Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol, 282, 135-63. https://doi.org/10.1016/S1937-6448(10)82003-9
- Lavie Y, Fiucci G, Liscovitch M (2001). Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev, 49, 317-23. https://doi.org/10.1016/S0169-409X(01)00144-2
- Lee H, Park DS, Razani B, et al (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol, 161, 1357-69. https://doi.org/10.1016/S0002-9440(10)64412-4
- Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE, (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16, 1391-97. https://doi.org/10.1038/sj.onc.1201661
- Ma X, Liu L, Nie W, et al (2013). Prognostic role of caveolin in breast cancer: a meta-analysis. Breast, 22, 462-9. https://doi.org/10.1016/j.breast.2013.03.005
- Maldonado-Báez L, Williamson C, Donaldson JG (2013). Clathrin-independent endocytosis: A cargo-centric view. Exp Cell Res, 319, 2759-69. https://doi.org/10.1016/j.yexcr.2013.08.008
- Martinez-Outschoorn U, Sotgia F, Lisanti MP (2014). Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol, 41, 195-216. https://doi.org/10.1053/j.seminoncol.2014.03.002
-
Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker- Menezes D, et al (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NF
${kappa}B$ activation in the tumor stromal microenvironment. Cell Cycle, 9, 3515-33. https://doi.org/10.4161/cc.9.17.12928 - Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle, 10, 1784-93. https://doi.org/10.4161/cc.10.11.15674
- Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2010). Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 9, 2423-33. https://doi.org/10.4161/cc.9.12.12048
- Martinez-Outschoorn UE, Sotgia F, Lisanti MP, (2015). Caveolae and signalling in cancer. Nat Rev Cancer, 15, 225-37. https://doi.org/10.1038/nrc3915
- Mercier I, Camacho J, Titchen K, et al (2012). Caveolin-1 and accelerated host aging in the breast tumor microenvironment: Chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol, 181, 278-93. https://doi.org/10.1016/j.ajpath.2012.03.017
- Mercier I, Casimiro MC, Wang C, et al (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol Ther, 7, 1212-25. https://doi.org/10.4161/cbt.7.8.6220
- Mercier I, Lisanti M (2012). Caveolin-1 and breast cancer: a new clinical perspective. Adv Exp Med Biol, 729, 83-94. https://doi.org/10.1007/978-1-4614-1222-9_6
- Mercier I, Lisanti MP (2012). Caveolin-1 and breast cancer: a new clinical perspective. caveolins and caveolae: roles in signaling and disease mechanisms. Adv Exp Med Biol, 729, 83-94. https://doi.org/10.1007/978-1-4614-1222-9_6
- Mineo C, Gill GN, Anderson RGW, (1999). Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem, 274, 30636-43. https://doi.org/10.1074/jbc.274.43.30636
- Orom UA, Lim MK, Savage JE, et al (2012). MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle, 11, 1291-5. https://doi.org/10.4161/cc.19704
- Otranto M, Sarrazy V, Bonte F, et al (2012). The role of the myofibroblast in tumor stroma remodeling. Cell Adh Mig, 6, 203-19. https://doi.org/10.4161/cam.20377
- Park DS, Lee H, Frank PG, et al (2002). Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell, 13, 3416-30. https://doi.org/10.1091/mbc.02-05-0071
- Park JH, Han HJ (2009). Caveolin-1 plays important role in EGFinduced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297, 935-44. https://doi.org/10.1152/ajpcell.00121.2009
- Park JH, Lee MY, Han HJ, et al (2009). A potential role for caveolin-1 in estradiol-17beta-induced proliferation of mouse embryonic stem cells: involvement of Src, PI3K/Akt, and MAPKs pathways. Int J Biochem Cell Biol, 41, 659-65. https://doi.org/10.1016/j.biocel.2008.07.010
- Park SS, Kim JE, Kim YA, Kim YC, Kim SW (2005). Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology, 47, 625-30. https://doi.org/10.1111/j.1365-2559.2005.02303.x
- Park WY, Park JS, Cho KA, et al (2000). Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem, 275, 20847-52. https://doi.org/10.1074/jbc.M908162199
- Patani N, Lambros MB, Natrajan R, et al (2012). Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Res Treat, 131, 307-10. https://doi.org/10.1007/s10549-011-1761-2
- Patani N, Martin LA, Reis-Filho JS, Dowsett M, (2012). The role of caveolin-1 in human breast cancer. Breast Cancer Res Treat, 131, 1-15. https://doi.org/10.1007/s10549-011-1751-4
- Pavlides S, Tsirigos A, Migneco G, et al (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9, 3485-505. https://doi.org/10.4161/cc.9.17.12721
- White BP, Molloy MP, Zhao H, et al (2013). Extranuclear ERalpha is associated with regression of T47D PKCalphaoverexpressing, tamoxifen-resistant breast cancer. Mol Cancer, 12, 34. https://doi.org/10.1186/1476-4598-12-34
- Perrone G, Altomare V, Zagami M, et al (2009). Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol, 22, 71-8. https://doi.org/10.1038/modpathol.2008.154
- Qian N, Ueno T, Kawaguchi-Sakita N, et al (2011). Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci, 102, 1590-6. https://doi.org/10.1111/j.1349-7006.2011.01985.x
- Rao X, Evans J, Chae H, et al (2012). CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene, 32, 4519-28
- Ren M, Liu F, Zhu Y, et al (2014). Absence of caveolin-1 expression in carcinoma associated fibroblast of invasive micropapollary carcinoma of the breast predicts poor patient outcome. Virchows Arch, 465, 291-8. https://doi.org/10.1007/s00428-014-1614-6
- Pinilla SM, Honrado E, Hardisson D, Benítez J, Palacios J, (2006). Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat, 99, 85-90. https://doi.org/10.1007/s10549-006-9184-1
- Sagara Y, Mimori K, Yoshinaga K, et al (2004). Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer, 91, 959-65.
- Savage K, Lambros MB, Robertson D, et al (2007). Caveolin 1 is overexpressed and amplified in a subset of basallike and metaplastic breast carcinomas: A morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res, 13, 90-101. https://doi.org/10.1158/1078-0432.CCR-06-1371
-
Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP, (1999). Caveolin-1 potentiates estrogen receptor
${\alpha}$ (ER${\alpha}$ ) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ER${\aopha}$ . J Biol Chem, 274, 33551-6. https://doi.org/10.1074/jbc.274.47.33551 - Schlegel A, Wang C, Pestell RG, Lisanti MP, (2001). Ligandindependent activation of oestrogen receptor alpha by caveolin-1. Bioch J, 359, 203-10. https://doi.org/10.1042/bj3590203
- Sekhar SC, Kasai T, Satoh A, et al (2013). Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells. J Cancer, 4, 391-401. https://doi.org/10.7150/jca.6470
- Senetta R, Stella G, Pozzi E, et al (2013). Caveolin-1 as a promoter of tumour spreading: When, how, where and why. J Cell Mol Med, 17, 325-36. https://doi.org/10.1111/jcmm.12030
- Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R, (2012). Tyrosine-phosphorylated caveolin-1 (Tyr- 14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal Kinase (JNK). J Biol Chem, 287, 17682-92. https://doi.org/10.1074/jbc.M111.304022
- Siegel R, Ma J, Zou Z, Jemal A, (2014). Cancer statistics, 2014. CA Cancer J Clin, 64, 9-29. https://doi.org/10.3322/caac.21208
- Simpkins SA, Hanby AM, Holliday DL, Speirs V, (2012). Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol, 227, 490-8. https://doi.org/10.1002/path.4034
- Sloan EK, Ciocca DR, Pouliot N, et al (2009). Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol, 174, 2035-43. https://doi.org/10.2353/ajpath.2009.080924
- Sloan EK, Stanley KL, Anderson RL, (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23, 7893-7. https://doi.org/10.1038/sj.onc.1208062
- Sotgia F (2012). Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423-467. https://doi.org/10.1146/annurev-pathol-011811-120856
- Sotgia F, Martinez-Outschoorn UE, Howell A, et al (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res, 66, 10647-51. https://doi.org/10.1158/0008-5472.CAN-06-2805
- Sotgia F, Martinez-Outschoorn UE, Pavlides S, et al (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Br Cancer Res, 13, 213. https://doi.org/10.1186/bcr2892
- Syeed N, Husain SA, Abdullah S, et al (2010). Caveolin-1 promotes mammary tumorigenesis: Mutational profile of the Kashmiri population. Asian Pac J Cancer Prev, 11, 689-96.
- Syeed N, Husain SA, Abdullah S, et al (2010). Mutational profile of the CAV-1 gene in breast cancer cases in the ethnic Kashmiri population. Asian Pac J Cancer Prev, 11, 1099-105.
- Tagawa A, Mezzacasa A, Hayer A, et al (2005). Assembly and trafficking of caveolar domains in the cell: Caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol, 170, 769-79. https://doi.org/10.1083/jcb.200506103
- Thomas NB, Hutcheson IR, Campbell L, et al (2010). Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res Treat, 119, 575-91. https://doi.org/10.1007/s10549-009-0355-8
- Tian F, Wu H, Li Z, et al (2009). Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer Invest, 27, 802-8. https://doi.org/10.1080/07357900802672720
- Trimmer C, Sotgia F, Whitaker-Menezes D, et al (2011). Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther, 11, 383-94. https://doi.org/10.4161/cbt.11.4.14101
- Tryfonopoulos D, Walsh S, Collins DM, et al (2011). Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol, 22, 2234-40. https://doi.org/10.1093/annonc/mdq757
- Wang XX, Wu Z, Huang HF, et al (2013). Caveolin-1, through its ability to negatively regulate TLR4, is a crucial determinant of MAPK activation in LPS-challenged mammary epithelial cells. Asian Pac J Cancer Prev, 14, 2295-9. https://doi.org/10.7314/APJCP.2013.14.4.2295
- Wang Y, Yu J, Zhan Q (2008). BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun, 370, 201-6. https://doi.org/10.1016/j.bbrc.2008.03.031
-
Wang Z, Wang N, Li W, et al (2014). Caveolin-1 mediates chemoresistance in breast cancer stem cells via
${\beta}$ -catenin/ ABCG2 signaling pathway. Carcinogenesis, 35, 2346-56. https://doi.org/10.1093/carcin/bgu155 - Weigelt B, Geyer FC, Natrajan R, et al (2010). The molecular underpinning of lobular histological growth pattern: A genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol, 220, 45-57. https://doi.org/10.1002/path.2629
- Williams TM, Medina F, Badano I, et al (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem, 279, 51630-46. https://doi.org/10.1074/jbc.M409214200
- Williams TM, Lee H, Cheung MW, et al (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis. Role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Bioll Chem, 279, 24745-56. https://doi.org/10.1074/jbc.M402064200
- Williams TM, Lisanti MP, (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288, 494-506.
- Williams TM, Lisanti MP, (2004). The caveolin proteins. Genome Biol, 5, 214. https://doi.org/10.1186/gb-2004-5-3-214
- Witkiewicz AK, Dasgupta A, Sotgia F, et al (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol, 174, 2023-34. https://doi.org/10.2353/ajpath.2009.080873
- Witkiewicz AK, Kline J, Queenan M, et al (2011). Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle, 10, 1794-1809. https://doi.org/10.4161/cc.10.11.15675
- Witkiewicz AK, Dasgupta A, Nguyen K, et al (2009). Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther, 8, 1071-9. https://doi.org/10.4161/cbt.8.11.8874
- Wu P, Qi B, Zhu H, et al (2007). Suppression of staurosporinemediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1. Cancer Lett, 256, 64-72. https://doi.org/10.1016/j.canlet.2007.05.007
- Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R, (2012). mTOR inhibitors in breast cancer: A systematic review. Gynecol Oncol, 127, 662-72. https://doi.org/10.1016/j.ygyno.2012.08.040
- Zhang EY, Cristofanilli M, Robertson F, et al (2013). Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res, 12, 2805-17. https://doi.org/10.1021/pr4001527
- Zou W, McDaneld L, Smith LM, (2003). Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. AntiCancer Res, 23, 4581-6.
피인용 문헌
- Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1 vol.249, pp.4, 2016, https://doi.org/10.1007/s00232-016-9885-2
- p53 as a Regulator of Lipid Metabolism in Cancer vol.17, pp.12, 2016, https://doi.org/10.3390/ijms17122074
- gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells vol.32, pp.12, 2018, https://doi.org/10.1096/fj.201701386
- Expression and clinical significance of Caveolin-1 in prostate Cancer after transurethral surgery vol.18, pp.1, 2018, https://doi.org/10.1186/s12894-018-0418-4