DOI QR코드

DOI QR Code

3D mechanical model based pulmonary nodule segmentation in CT images

CT영상용 3차원 역학 모델 기반 폐 결절 분할 방법

  • Yoon, Ji-Seok (School of Mechatronics, Gwangju Institute of Science and Technology (GIST)) ;
  • Choi, Tae-Sun (School of Mechatronics, Gwangju Institute of Science and Technology (GIST))
  • Received : 2015.08.03
  • Accepted : 2015.08.14
  • Published : 2015.08.30

Abstract

In this paper, a 3D mechanical model based on pulmonary nodule segmentation method is proposed. The proposed method has three main parts. First, an initial 3D mechanical model is generated. The model is made up of many triangle elements resulting in forming whole shape of the model as sphere. Second, points of the model are deformed, and finally internal and external energies according to each deformation are calculated. The internal energy is determined by the model shape, and the external energy is determined by intensity. After the model is deformed, the process of searching the minimum energy generated by the deformation is executed repetitively. If the model energy converges, the nodule is segmented by using the proposed model. The proposed method greatly improves the result compared with conventional methods.

본 논문에서는 3차원 역학 모델을 이용한 폐 결절 분할 방법을 제안한다. 제안된 폐결절 분할 방법은 세 가지 과정으로 구성된다. 첫 번째, 초기 3차원 역학 모델을 생성한다. 생성된 모델은 삼각형 메쉬로 구성되어져 있고 구의 형태를 갖는다. 두 번째, 구성된 초기 모델의 점들을 변화시킨다. 세 번째, 각각의 변화에 따라 외부 에너지와 내부에너지를 계산 한다. 내부 에너지는 형태 기반 에너지로 구성되어 있고, 외부에너지는 음영값 기반 에너지로 구성된다. 이 초기 모델을 변화시키고, 변화에 따른 에너지의 최소값을 찾는 과정을 반복한다. 모델의 에너지가 수렴되면 이를 이용하여 결절을 분할한다. 제안된 방법은 기존 방법에 비하여 정확도가 크게 개선되었다.

Keywords

References

  1. Cancer research UK, "Cancer survival statistics for common cancers", http://www.cancerresearchuk.org/cancer-info/cancerstats/survival/common-cancers/.
  2. W.J. Kostis, A.P. Reeves, D.F. Yankelevitz, and C.I. Henschke, "Threedimensional segmentation and growth-rate estimation of small pulmonary nodules in helical ct images," Medical Imaging, IEEE Transactions on, vol. 22, no. 10, pp.1259-1274, 2003. https://doi.org/10.1109/TMI.2003.817785
  3. Rafael Wiemker and Andre Zwartkruis, "Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT," International Congress Series, vol. 1230, pp. 653-658, 2001.
  4. J Dehmeshki, H Amin, M Valdivieso, and X Ye, "Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach," IEEE transactions on medical imaging, vol. 27, no. 4, pp. 467-80, 2008. https://doi.org/10.1109/TMI.2007.907555
  5. Riccardo Boscolo, Matthew S. Brown, and Michael F. McNitt-Gray, "Medical image segmentation with knowledge-guided robust active contours," RadioGraphics, vol. 22, no. 2, pp. 437-448, 2002. https://doi.org/10.1148/radiographics.22.2.g02mr26437
  6. Ted W. Way, Lubomir M. Hadjiiski, Berkman Sahiner, Heang-Ping Chan, Philip N. Cascade, Ella A. Kazerooni, Naama Bogot, and Chuan Zhou, "Computer-aided diagnosis of pulmonary nodules on ct scans: Segmentation and classication using 3d active contours," Medical Physics, vol. 33, no. 7, pp. 2323-2337, 2006. https://doi.org/10.1118/1.2207129
  7. Ning Xu, Narendra Ahuja, and Ravi Bansal, "Object segmentation using graph cuts based active contours," Computer Vision and Image Understanding, vol. 107, no. 3, pp. 210-224, 2007. https://doi.org/10.1016/j.cviu.2006.11.004
  8. D.T. Lee and B.J. Schachter, "Two algorithms for constructing a delaunay triangulation," International Journal of Computer & Information Sciences, vol. 9, no.3, pp. 219-242, 1980. https://doi.org/10.1007/BF00977785
  9. P. Persson and G. Strang, "A simple mesh generator in matlab," SIAM Review, vol. 46, no. 2, pp. 329-345, 2004. https://doi.org/10.1137/S0036144503429121
  10. Samuel G. Armato, III, Geoffrey McLennan, Luc Bidaut, Michael F. McNitt-Gray, Charles R. Meyer, Anthony P. Reeves, Binsheng Zhao, Denise R. Aberle, Claudia I. Henschke, Eric A. Hoffman, Ella A. Kazerooni, Heber MacMahon1, Edwin J. R. van Beek, David Yankelevitz, Alberto M. Biancardi, Peyton H. Bland, Matthew S. Brown, Roger M. Engelmann, Gary E. Laderach, Daniel Max, Richard C. Pais, David P.-Y. Qing, Rachael Y. Roberts1, Amanda R. Smith9, Adam Starkey, Poonam Batra, Philip Caligiuri, Ali Farooqi, Gregory W. Gladish, C. Matilda Jude, Reginald F. Munden, Iva Petkovska, Leslie E. Quint, Lawrence H. Schwartz, Baskaran Sundaram, Lori E. Dodd, Charles Fenimore, David Gur, Nicholas Petrick, John Freymann, Justin Kirby, Brian Hughes, Alessi Vande Casteele, Sangeeta Gupte, Maha Sallam, Michael D. Heath, Michael H. Kuhn, Ekta Dharaiya, Richard Burns, David S. Fryd, Marcos Salganicoff, Vikram Anand, Uri Shreter, Stephen Vastagh, Barbara Y. Croft, and Laurence P. Clarke, "The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans", Medical Physics, Volume 38, Issue 2, pp. 915-931, 2011. https://doi.org/10.1118/1.3528204
  11. D. Cascio, R.Magro, F.Fauci, M.Iacomi, G.Raso, "Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models " Computers in Biology and Medicine 42, pp, 1098-1109, 2012. https://doi.org/10.1016/j.compbiomed.2012.09.002
  12. Jia-Yin Zhou, Damon W. K. Wong, Feng Ding, Sudhakar K. Venkatesh, Qi Tian, Ying-Yi Qi, Wei Xiong, Jimmy J. Liu, Wee-Kheng Leow, "Liver tumour segmentation using contrast-enhanced multi-detector CT data: performance benchmarking of three semiautomated methods", European Radiology, Volume 20, Issue 7, pp 1738-1748, 2010 https://doi.org/10.1007/s00330-010-1712-z