DOI QR코드

DOI QR Code

Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization

  • Lee, Hyang-Ae (Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology) ;
  • Hyun, Sung-Ae (Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology) ;
  • Park, Sung-Gurl (Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology) ;
  • Kim, Ki-Suk (Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology) ;
  • Kim, Sung Joon (Department of Physiology, Seoul National University College of Medicine)
  • Received : 2015.10.26
  • Accepted : 2015.11.05
  • Published : 2016.01.01

Abstract

Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of $Ca^{2+}$ channel current ($I_{Ca}$) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated $K^+$ channel currents ($I_{Kr}$, $I_{Ks}$) and voltage-gated $Na^+$ channel current ($I_{Na}$). The concentration-dependent inhibition of $Ca^{2+}$ channel currents ($I_{Ca}$) was examined in rat cardiomyocytes; these CCBs have similar potency on $I_{Ca}$ channel blocking with $IC_{50}$ (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both $APD_{50}$ and $APD_{90}$ already at $1{\mu}M$ whereas NIC and AML shortened $APD_{50}$ but not $APD_{90}$ up to $30{\mu}M$. According to ion channel studies, NIC and AML concentration-dependently inhibited $I_{Kr}$ and $I_{Ks}$ while ISR had only partial inhibitory effects (<50% at $30{\mu}M$). Inhibition of $I_{Na}$ was similarly observed in the three CCBs. Since the $I_{Kr}$ and $I_{Ks}$ mainly contribute to cardiac repolarization, their inhibition by NIC and AML could compensate for the AP shortening effects due to the block of $I_{Ca}$.

Keywords

References

  1. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, McInnes GT, Mehlsen J, Nieminen M, O'Brien E, Ostergren J; ASCOT Investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366:895-906. https://doi.org/10.1016/S0140-6736(05)67185-1
  2. Siragy HM. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitors or calcium channel blocker vs diuretic. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Curr Hypertens Rep. 2003;5:293-294. https://doi.org/10.1007/s11906-003-0036-7
  3. Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB, Neaton JD, Grimm RH Jr, Hansson L, Lacourciere Y, Muller J, Sleight P, Weber MA, Williams G, Wittes J, Zanchetti A, Anders RJ; CONVINCE Research Group. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003;289:2073-2082. https://doi.org/10.1001/jama.289.16.2073
  4. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, Mancia G, Cangiano JL, Garcia-Barreto D, Keltai M, Erdine S, Bristol HA, Kolb HR, Bakris GL, Cohen JD, Parmley WW; INVEST Investigators. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805-2816. https://doi.org/10.1001/jama.290.21.2805
  5. Burnier M, Pruijm M, Wuerzner G. Treatment of essential hypertension with calcium channel blockers: what is the place of lercanidipine? Expert Opin Drug Metab Toxicol. 2009;5:981-987. https://doi.org/10.1517/17425250903085135
  6. Hirano Y, Hiraoka M. Electrophysiology of cardiac ion channels. Nihon Rinsho. 1996;54:2050-2055.
  7. DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23:223-238. https://doi.org/10.2165/00139709-200423040-00003
  8. Priest BT, Bell IM, Garcia ML. Role of hERG potassium channel assays in drug development. Channels (Austin). 2008;2:87-93. https://doi.org/10.4161/chan.2.2.6004
  9. Barhanin J, Attali B, Lazdunski M. IKs, a slow and intriguing cardiac $K^+$ channel and its associated long QT diseases. Trends Cardiovasc Med. 1998;8:207-214. https://doi.org/10.1016/S1050-1738(98)00013-9
  10. Haverkamp W, Breithardt G, Camm AJ, Janse MJ, Rosen MR, Antzelevitch C, Escande D, Franz M, Malik M, Moss A, Shah R. The potential for QT prolongation and proarrhythmia by nonantiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur Heart J. 2000;21:1216-1231. https://doi.org/10.1053/euhj.2000.2249
  11. Cubeddu LX. QT prolongation and fatal arrhythmias: a review of clinical implications and effects of drugs. Am J Ther. 2003;10:452-457. https://doi.org/10.1097/00045391-200311000-00013
  12. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M. Short QT Syndrome: a familial cause of sudden death. Circulation. 2003;108:965-970. https://doi.org/10.1161/01.CIR.0000085071.28695.C4
  13. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, Leone G, Maury P, Anttonen O, Haissaguerre M, Gaita F. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J. 2006;27:2440-2447. https://doi.org/10.1093/eurheartj/ehl185
  14. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation. 2004;110:3661-3666. https://doi.org/10.1161/01.CIR.0000143078.48699.0C
  15. Hondeghem LM. Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol. 2006;17:337-340. https://doi.org/10.1111/j.1540-8167.2006.00347.x
  16. Garberoglio L, Giustetto C, Wolpert C, Gaita F. Is acquired short QT due to digitalis intoxication responsible for malignant ventricular arrhythmias? J Electrocardiol. 2007;40:43-46. https://doi.org/10.1016/j.jelectrocard.2006.07.003
  17. Lu HR, Vlaminckx E, Hermans AN, Rohrbacher J, Van Ammel K, Towart R, Pugsley M, Gallacher DJ. Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. Br J Pharmacol. 2008;154:1427-1438. https://doi.org/10.1038/bjp.2008.191
  18. Aubert M, Osterwalder R, Wagner B, Parrilla I, Cavero I, Doessegger L, Ertel EA. Evaluation of the rabbit Purkinje fibre assay as an in vitro tool for assessing the risk of drug-induced torsades de pointes in humans. Drug Saf. 2006;29:237-254. https://doi.org/10.2165/00002018-200629030-00007
  19. Food and Drug Administration, HHS. International Conference on Harmonisation; guidance on S7B Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals; availability. Notice. Fed Regist. 2005;70:61133-61134.
  20. D'Alonzo AJ, Hess TA, Darbenzio RB, Sewter JC, Conder ML, McCullough JR. Effects of cromakalim or pinacidil on pacing- and ischemia-induced ventricular fibrillation in the anesthetized pig. Basic Res Cardiol. 1994;89:163-176.
  21. D'Alonzo AJ, Zhu JL, Darbenzio RB, Dorso CR, Grover GJ. Proarrhythmic effects of pinacidil are partially mediated through enhancement of catecholamine release in isolated perfused guineapig hearts. J Mol Cell Cardiol. 1998;30:415-423. https://doi.org/10.1006/jmcc.1997.0605
  22. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation. 2004;110:3661-3666. https://doi.org/10.1161/01.CIR.0000143078.48699.0C
  23. Hondeghem LM. Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol. 2006;17:337-340. https://doi.org/10.1111/j.1540-8167.2006.00347.x
  24. Garberoglio L, Giustetto C, Wolpert C, Gaita F. Is acquired short QT due to digitalis intoxication responsible for malignant ventricular arrhythmias? J Electrocardiol. 2007;40:43-46. https://doi.org/10.1016/j.jelectrocard.2006.07.003
  25. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013-1022. https://doi.org/10.1056/NEJMra032426
  26. Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation. 2001;103:2004-2013. https://doi.org/10.1161/01.CIR.103.15.2004
  27. Hondeghem LM. QT and TdP. QT: an unreliable predictor of proarrhythmia. Acta Cardiol. 2008;63:1-7. https://doi.org/10.2143/AC.63.1.2025324
  28. Milberg P, Eckardt L, Bruns HJ, Biertz J, Ramtin S, Reinsch N, Fleischer D, Kirchhof P, Fabritz L, Breithardt G, Haverkamp W. Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther. 2002;303:218-225. https://doi.org/10.1124/jpet.102.037911
  29. Lu HR, Vlaminckx E, Van Ammel K, De Clerck F. Drug-induced long QT in isolated rabbit Purkinje fibers: importance of action potential duration, triangulation and early afterdepolarizations. Eur J Pharmacol. 2002;452:183-192. https://doi.org/10.1016/S0014-2999(02)02246-X
  30. Champeroux P, Viaud K, El Amrani AI, Fowler JS, Martel E, Le Guennec JY, Richard S. Prediction of the risk of Torsade de Pointes using the model of isolated canine Purkinje fibres. Br J Pharmacol. 2005;144:376-385. https://doi.org/10.1038/sj.bjp.0706070
  31. Guo D, Zhao X, Wu Y, Liu T, Kowey PR, Yan GX. L-type calcium current reactivation contributes to arrhythmogenesis associated with action potential triangulation. J Cardiovasc Electrophysiol. 2007;18:196-203. https://doi.org/10.1111/j.1540-8167.2006.00698.x
  32. Packer M, O'Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Frid D, Wertheimer JH, Cropp AB, DeMets DL. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective Randomized Amlodipine Survival Evaluation Study Group. N Engl J Med. 1996;335:1107-1114. https://doi.org/10.1056/NEJM199610103351504
  33. O'Connor CM, Carson PE, Miller AB, Pressler ML, Belkin RN, Neuberg GW, Frid DJ, Cropp AB, Anderson S, Wertheimer JH, DeMets DL. Effect of amlodipine on mode of death among patients with advanced heart failure in the PRAISE trial. Prospective Randomized Amlodipine Survival Evaluation. Am J Cardiol. 1998;82:881-887. https://doi.org/10.1016/S0002-9149(98)00496-2
  34. Udelson JE, DeAbate CA, Berk M, Neuberg G, Packer M, Vijay NK, Gorwitt J, Smith WB, Kukin ML, LeJemtel T, Levine TB, Konstam MA. Effects of amlodipine on exercise tolerance, quality of life, and left ventricular function in patients with heart failure from left ventricular systolic dysfunction. Am Heart J. 2000;139:503-510. https://doi.org/10.1016/S0002-8703(00)90095-4
  35. Littler WA, Sheridan DJ. Placebo controlled trial of felodipine in patients with mild to moderate heart failure. UK Study Group. Br Heart J. 1995;73:428-433. https://doi.org/10.1136/hrt.73.5.428
  36. Li K, Zhang X, Yuan YS, Zhao FL. A high-performance liquid chromatographic method for the determination of nicardipine in plasma and its application to pharmacokinetics in humans. Biomed Chromatogr. 1998;12:326-329. https://doi.org/10.1002/(SICI)1099-0801(199811/12)12:6<326::AID-BMC755>3.0.CO;2-M
  37. Christensen HR, Antonsen K, Simonsen K, Lindekaer A, Bonde J, Angelo HR, Kampmann JP. Bioavailability and pharmacokinetics of isradipine after oral and intravenous administration: half-life shorter than expected? Pharmacol Toxicol. 2000;86:178-182. https://doi.org/10.1034/j.1600-0773.2000.d01-32.x
  38. Elliott HL, Meredith PA, Reid JL, Faulkner JK. A comparison of the disposition of single oral doses of amlodipine in young and elderly subjects. J Cardiovasc Pharmacol. 1988;12 Suppl 7:S64-66.
  39. van Zwieten PA, Pfaffendorf M. Similarities and differences between calcium antagonists: pharmacological aspects. J Hypertens Suppl. 1993;11:S3-11.
  40. Schoffstall JM, Spivey WH, Gambone LM, Shaw RP, Sit SP. Effects of calcium channel blocker overdose-induced toxicity in the conscious dog. Ann Emerg Med. 1991;20:1104-1108. https://doi.org/10.1016/S0196-0644(05)81384-8
  41. Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK, Song IS, Xu Z, Kwon HY, Kang SC, Sohn EH, Ko KS, Rhee BD, Kim N, Han J. The critical roles of zinc: beyond impact on myocardial signaling. Korean J Physiol Pharmacol. 2015;19:389-399. https://doi.org/10.4196/kjpp.2015.19.5.389
  42. Yun J, Bae H, Choi SE, Kim JH, Choi YW, Lim I, Lee CS, Lee MW, Ko JH, Seo SJ, Bang H. Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels. Korean J Physiol Pharmacol. 2013;17:37-42. https://doi.org/10.4196/kjpp.2013.17.1.37

Cited by

  1. New progress in understanding the cellular mechanisms of anti-arrhythmic drugs vol.13, pp.1, 2016, https://doi.org/10.1515/biol-2018-0041
  2. Characterization of a high throughput human stem cell cardiomyocyte assay to predict drug-induced changes in clinical electrocardiogram parameters vol.912, pp.None, 2016, https://doi.org/10.1016/j.ejphar.2021.174584
  3. Scorpion Venom peptide, AGAP inhibits TRPV1 and potentiates the analgesic effect of lidocaine vol.7, pp.12, 2016, https://doi.org/10.1016/j.heliyon.2021.e08560