DOI QR코드

DOI QR Code

카카오닙과 커버춰의 가공 조건에 따른 기능성 분석

Functional Activities of Cacao Nibs and Couvertures according to Process Conditions

  • 최수영 (서울대학교 식품영양학과.생활과학연구소) ;
  • 손양주 (서울대학교 식품영양학과.생활과학연구소) ;
  • 유경미 (숭의여자대학 식품영양과) ;
  • 이기원 (서울대학교 농업생명과학대학 바이오모듈레이션 전공) ;
  • 황인경 (서울대학교 식품영양학과.생활과학연구소)
  • Choi, Soo-Young (Department of Food and Nutrition.Research Institute of Human Ecology, Seoul National University) ;
  • Son, Yang-Ju (Department of Food and Nutrition.Research Institute of Human Ecology, Seoul National University) ;
  • Yoo, Kyung-Mi (Department of Food and Nutrition, SoongEui Women's College) ;
  • Lee, Ki-Won (WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition.Research Institute of Human Ecology, Seoul National University)
  • 투고 : 2015.09.17
  • 심사 : 2015.11.15
  • 발행 : 2016.01.31

초록

본 연구에서는 카카오닙을 제조하기 위한 카카오콩에 대한 반열풍식 로스팅 최적 조건을 탐색하고, 콘칭 온도(50, $60^{\circ}C$)와 시간(24, 48, 72 h)을 달리하여 제조한 커버춰의 항산화 활성의 차이를 분석함으로써 기능성 커버춰의 가공조건에 대한 기초자료를 제공하고자 하였다. 라디칼 소거능 및 기능성 성분의 함량 분석 결과 카카오닙은 모든 분석 항목에서 가열하지 않은 시료가 가장 높은 값을 나타냈다. 또한 로스팅 처리군 내에서는 로스팅 초기에는 급격히 감소하였으나 25분까지는 시간 경과에 따라 항산화능이 증가하였으므로, 항산화능의 크기는 대체로 R0(raw cacao nib), R25($200^{\circ}C$, 25분 로스팅한 시료), R30($200^{\circ}C$, 30분 로스팅한 시료), R20($200^{\circ}C$, 20분 로스팅한 시료), R15($200^{\circ}C$, 15분 로스팅한 시료)의 순으로 높은 것으로 분석되었다. 커버춰는 같은 카카오매스 함량(cacao mass content, CMC)의 시료 간에는 콘칭 온도가 높을수록 항산화능이 높게 측정되었다. 종합적으로 보았을 때 로스팅 및 콘칭 공정과 같은 가열 처리는 카카오닙의 기능성 성분의 조성 변화에 영향을 주었으며, DPPH를 제외한 ABTS, 총 폴리페놀 함량, 총 플라보노이드 함량의 결과는 서로 유사한 경향을 보였다. 또한 총 플라보이드 함량을 제외한 나머지 실험 결과에서는 커버춰의 제작 시 총 플라보노이드 함량을 10% 높이는 것보다 콘칭 온도를 $10^{\circ}C$ 높이는 것이 항산화 능력을 더 많이 상승시키는 효과를 나타냈다. HPLC를 이용한 대표적인 카테킨 유래 화합물 정량 결과 카카오닙에서는 생시료가 4가지 항목 모두에서 로스팅을 거친 시료들에 비해 높은 값을 보였다(P<0.05). Procyanidin B1은 군 간 유의적인 차이가 없었고, procyanidin B2와 catechin, epicatechin의 함량은 모두 로스팅 시간이 25분 이내인 경우에 증가하였으나, 30분 로스팅을 거친 시료(R30)는 감소하였다(P<0.05). 따라서 $200^{\circ}C$에서 25분 동안 로스팅을 처리한 시료(R25)가 기능성 성분을 가장 많이 함유한 것으로 분석되었다. 커버춰의 경우 대체로 콘칭 시간이 경과할수록 procyanidin B1의 함량이 증가하였다. Procyanidin B2와 catechin, epicatechin은 모든 시료에서 48시간 동안 콘칭을 거친 시료가 유의적으로 높은 값을 보였으므로, $60^{\circ}C$에서 48시간 동안 콘칭을 거친 70% CMC의 커버춰(HH48)가 모든 시료들 중 가장 많은 카테킨 유래 화합물을 함유한 것으로 나타났다.

This study was conducted to provide information regarding changes in antioxidant activity in response to conching temperatures, conching times, and cacao mass content (CMC) in dark chocolate. The radical scavenging activities and functional components of cacao nibs were highest for raw cacao nib (R0) under all conditions. Moreover, antioxidant activities and functional compounds increased during roasting for 25 min. As the conching temperature increased, the radical scavenging activities and functional components increased. Quantitative analysis of major catechin-derived compounds by HPLC revealed that R0 had the highest value for other roasted cacao nibs in all aspects (P<0.05). The content of procyanidin B2, catechin, and epicatechin increased during roasting for 25 min. Finally, evaluation of couvertures revealed that procyanidin B1 content increased as conching time increased to 48 h, except for 70% CMC and conched at $60^{\circ}C$ (HH) and 70% CMC and conched at $50^{\circ}C$. Overall, HH48 contained the richest catechin-derived components.

키워드

참고문헌

  1. Beckett ST. 2008. The science of chocolate. 2nd ed. The Royal Society of Chemistry, Cambridge, UK. p 11-12.
  2. Herrmann K. 1995. Recent findings about cocoa ingredients. II: catechin, procyanidins, their oxidative condensation, and dietary fiber of peeled cacao. Gordian 95: 141-144.
  3. Payne MJ, Hurst WJ, Miller KB, Rank C, Stuart DA. 2010. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J Agric Food Chem 58: 10518-10527. https://doi.org/10.1021/jf102391q
  4. Lee ES, Kum JY, Hwang YO, Tu OJ, Jo HB, Kim JH, Chae YZ. 2012. Comparative study on antioxidant capacities and polyphenolic contents of commercially available cocoa-containing products. J Korean Soc Food Sci Nutr 41: 1356-1362. https://doi.org/10.3746/jkfn.2012.41.10.1356
  5. Ramli N, Hassan O, Said M, Samsudin W, Idris NA. 2006. Influence of roasting conditions on volatile flavor of roasted Malaysian cocoa beans. J Food Process Preserv 30: 280-298. https://doi.org/10.1111/j.1745-4549.2006.00065.x
  6. Nascimento MS, Brum DM, Pena PO, Berto MI, Efraim P. 2012. Inactivation of Salmonella during cocoa roasting and chocolate conching. Int J Food Microbiol 159: 225-229. https://doi.org/10.1016/j.ijfoodmicro.2012.08.017
  7. Lee HS. 2010. Coffee roasting technique. Seoul Commune, Seoul, Korea. p 8-100.
  8. Nebesny E, Rutkowski J. 1998. Effect of roasting and secondary fermentation on cocoa bean enrichment. Pol J Food Nutr Sci 3: 437-445.
  9. Oliviero T, Capuano E, Cammerer B, Fogliano V. 2009. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. J Agric Food Chem 57: 147-152. https://doi.org/10.1021/jf802250j
  10. Hoskin JM, Dimick PS. 1980. Observations of chocolate during conching by scanning electron microscopy and viscometry. J Food Sci 45: 1541-1545. https://doi.org/10.1111/j.1365-2621.1980.tb07558.x
  11. Mattia CD, Martuscelli M, Sacchetti G, Beheydt B, Mastro cola D, Pittia P. 2014. Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Res Int 63: 367-372. https://doi.org/10.1016/j.foodres.2014.04.009
  12. Afoakwa EO. 2000. Chocolate science and technology. Wiley-Blackwell, Chichester, UK. p 43-47.
  13. Konar N. 2013. Influence of conching temperature and some bulk sweeteners on physical and rheological properties of prebiotic milk chocolate containing inulin. Eur Food Res Technol 236: 135-143. https://doi.org/10.1007/s00217-012-1873-x
  14. Wan Rosli WI. 1997. Effect of roasting temperature and time on precursors, volatile components and flavour quality of cocoa beans during nib roasting. MS Thesis. Universiti Putra Malaysia, Serdang, Malaysia. p 1-25.
  15. Duarte SMS, Abreu CMP, Menezes HC, Santos MH, Gouvea CMCP. 2005. Effect of processing and roasting on the antioxidant activity of coffee brews. Cienc Tecnol Aliment 25: 387-393. https://doi.org/10.1590/S0101-20612005000200035
  16. Komes D, Belscak-Cvitanovic A, Skrabal S, Vojvodic A, Busic A. 2013. The influence of dried fruits enrichment on sensory properties of bitter and milk chocolates and bioactive content of their extracts affected by different solvents. LWT-Food Sci Technol 53: 360-369. https://doi.org/10.1016/j.lwt.2013.02.016
  17. Kim DO, Lee KW, Lee HJ, Lee CY. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50: 3713-3717. https://doi.org/10.1021/jf020071c
  18. Jeon G, Han J, Choi Y, Lee SM, Kim HT, Lee J. 2008. Antioxidant and antiproliferative activity of pepper (Capsicum annuum L.) leaves. J Korean Soc Food Sci Nutr 37: 1079-1083. https://doi.org/10.3746/jkfn.2008.37.8.1079
  19. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  20. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Arlorio M, Locatelli M, Travaglia F, Coisson JD, Grosso ED, Minassi A, Appendino G, Martelli A. 2008. Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.). Food Chem 106: 967-975. https://doi.org/10.1016/j.foodchem.2007.07.009
  22. Jolic SM, Redovnikovic IR, Markovic K, Sipusic DI, Delonga K. 2011. Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. Int J Food Sci Technol 46: 1793-1800. https://doi.org/10.1111/j.1365-2621.2011.02670.x
  23. Jinap MS, Nazamid BJS. 2004. Effect of polyphenol concentration on pyrazine formation during cocoa liquor roasting. Food Chem 85: 73-80. https://doi.org/10.1016/j.foodchem.2003.06.005
  24. Lee KW, Kim YJ, Lee HJ, Lee CY. 2003. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51: 7292-7295. https://doi.org/10.1021/jf0344385
  25. Cooper KA, Donovan JL, Waterhouse AL, Williamson G. 2008. Cocoa and health: a decade of research. Br J Nutr 99: 1-11.
  26. Lamuela-Raventos RM, Izquierdo-Pulido M, Estruch R. 2013. Industrial and home processing of cocoa polyphenols. In Chocolate in Health and Nutrition. Watson RR, Preedy VR, Zibadi S, eds. Humana Press, New York, NY, USA. Vol 7, p 119-122.
  27. Kim H, Keeney PG. 1984. Epicatechin content in fermented and unfermented cocoa beans. J Food Sci 49: 1090-1092. https://doi.org/10.1111/j.1365-2621.1984.tb10400.x
  28. Dallas C, Ricardo-da-Silva JM, Laureano O. 1995. Degradation of oligomeric procyanidins and anthocyanins in a Tinta Roriz red wine during maturation. Vitis 34: 51-56.
  29. Ortega N, Romero MP, Macia A, Reguant J, Angles N, Morello JR, Motilva MJ. 2008. Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem 56: 9621-9627. https://doi.org/10.1021/jf8014415
  30. Schumacher AB, Brandelli A, Schumacher EW, Macedo FC, Pieta L, Klug TV, Jong EV. 2009. Development and evaluation of a laboratory scale conch for chocolate production. Int J Food Sci Technol 44: 616-622. https://doi.org/10.1111/j.1365-2621.2008.01877.x

피인용 문헌

  1. Effect of Cacao Nip Extracts (CEs) on Quality Characteristics of Pork Patties during Cold Storage Period vol.39, pp.6, 2016, https://doi.org/10.5851/kosfa.2019.e77