DOI QR코드

DOI QR Code

Calculation of Leakage Inductance of Integrated Magnetic Transformer with Separated Secondary Winding Used in ZVS PSFB Converter

  • Tian, Jiashen (College of Electronic Information and Control Engineering, Beijing University of Technology) ;
  • Zhang, Yiming (College of Electronic Information and Control Engineering, Beijing University of Technology) ;
  • Ren, Xiguo (College of Electronic Information and Control Engineering, Beijing University of Technology) ;
  • Wang, Xuhong (College of Electronic Information and Control Engineering, Beijing University of Technology) ;
  • Tao, Haijun (College of Electronic Information and Control Engineering, Beijing University of Technology)
  • 투고 : 2016.05.07
  • 심사 : 2016.11.22
  • 발행 : 2016.12.31

초록

A novel zero voltage switching (ZVS) phase shift full bridge (PSFB) converter used in geophysical exploration is proposed in this paper. To extend the ZVS ranges and increase power density of the converter, external inductor acting as leakage inductance is applied and integrated into the integrated magnetic (IM) transformer with separated secondary winding. Moreover, the loss of ZVS PSFB converter is also decreased. Besides, the analysis and accurate prediction methodology of the leakage inductance of the IM transformer are proposed, which are based on magnetic energy and Lebedev. Finally, to verify the accuracy of analysis and methodology, the experimental and finite element analysis (FEA) results of IM transformer and 40 kW converter prototypes are given.

키워드

참고문헌

  1. G. Naga and B. Yadav, IEEE Trans. Power Electron. 9, 29 (2014).
  2. S. H. Lee, C. Y. Park, J. M. Kwon, and B. H. Kwon, IEEE Trans. Power Electron. 8, 30 (2015).
  3. K. Shi, D. Zhang, Z. Zhou, M. Zhang, D. Zhang, and Y. Gu, IEEE Trans. Power Electron. 11, 31 (2016).
  4. J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, Proc. IEEE APEC. (1990) pp. 275-284.
  5. H. Zhu, D. Zhang, Q. Liu, and Z. Zhou, IEEE Trans. Power Electron. 3, 31 (2016).
  6. K. Umetani, IEEJ Trans. Electr. Electron. 1, 7 (2012).
  7. K. Umetani, J. Imaoka, M. Yamamoto, S. Arimura, and T. Hirano, IEEE Trans. Ind. Appl. 1, 51 (2015).
  8. M. Pahlevani, S. Eren, A. Bakhshai, and P. Jain, IEEE Trans. Power Electron. 2, 31 (2016).
  9. Y. Jiang and Z. Chen, IET Power Electron. 3, 5 (2010).
  10. J. G. Cho, J. A. Sabate, and F. C. Lee, Proc. IEEE APEC. (1994) pp. 143-149.
  11. M. Ordonez and J. E. Quaicoe, IEEE Trans. Power Electron. 2, 26 (2011).
  12. R. Ayyanar and N. Mohan, IEEE Trans. Power Electron. 2, 16 (2001).
  13. M. Borage, S. Tiwari, S. Bhardwaj, and S. Kotaiah, IEEE Trans. Power Electron. 4, 23 (2008).
  14. K. M. Cho, Y. D. Kim, I. H. Cho, and G. W. Moon, IEEE Trans. Power Electron. 5, 27 (2012).
  15. B. G. Kang, C. S. Park, and S. K. Chung, Electron. Lett. 10, 50 (2014).
  16. J. M. Choi, B. J. Byen, Y. J. Lee, D. H. Han, H. S. Kho, and G. H. Choe, IEEE Trans. Magn. 11, 48 (2012).
  17. R. Doebbelin and M. Benecke, Power Electron. & Motion Control Conf. (2008) pp. 1280-1286.
  18. X. Cheng, G. Xie, and F. Deng, IEEJ Trans. Electr. Electron. 2, 11 (2016).
  19. M. A. Bahmani and T. Thiringer, IEEE Trans. Power Electron. 10, 30 (2015).
  20. Z. Ouyang, J. Zhang, and W. G. Hurley, IEEE Trans. Power Electron. 10, 30 (2015).
  21. R. Doebbelin, C. Teichert, M. Benecke, and A. Lindemann, PIERS Online. 5, 8 (2009).
  22. J. C. Maxwell, Lehrbuch der Elektrizitaet und des Magnetismus, Springer-Verlag, 2 (1883).
  23. R. Doebbelin and A. Lindemann, PIERS Procedings. (2010) pp. 5-8.
  24. A. Hilal, M. A. Raulet, C. Martin, and F. Sixdenier, J. Electron. Mater. 10, 44 (2015).
  25. T. Gheiratmand and H. M. Hosseini, J. Magn. Magn. Mater. 19, 408 (2016).