DOI QR코드

DOI QR Code

THE BASKET NUMBERS OF LINKS OF 6 CROSSINGS OR LESS

  • Received : 2015.01.22
  • Accepted : 2016.01.30
  • Published : 2016.01.30

Abstract

In present article, we find a complete classification theorem of links of basket numbers 2 or less. As an application, we study the basket numbers of links of 6 crossings or less.

Keywords

References

  1. Je-Jun Bang, Jun-Ho Do, Dongseok Kim, Tae-Hyung Kim and Se-Han Park, The basket numbers of knots,,preprint.
  2. Yoon-Ho Choi, Y. K. Chung and D. Kim, The complete list of prime knots whose flat plumbing basket numbers are 6 or less, preprint, arXiv:1408.3729.
  3. R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books, and a new coding algorithm for links, Bull. London Math. Soc. 40(3), (2008), 405-414 https://doi.org/10.1112/blms/bdn020
  4. D. Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59(339), (1986), I.VIII, 198.
  5. D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from induced graphs, preprint, arXiv:1108.1455.
  6. L. Rudolph, Hopf plumbing, arborescent Seifert surfaces, baskets, espaliers, and homogeneous braids, Topology Appl. 116 (2001), 255277. https://doi.org/10.1016/S0166-8641(00)90091-9
  7. H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571592.
  8. J. Stallings, Constructions of fibred knots and links, in: Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2, Amer. Math. Soc., Providence, RI, 1978, pp. 5560.
  9. T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp. princeton.edu/pub/tvz/.