DOI QR코드

DOI QR Code

Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites

이산화 티타늄/마이카 복합 재료의 적외선 광반사 특성

  • Kil, Hyun Suk (Department of Chemistry, Kongju National University) ;
  • Rhee, Seog Woo (Department of Chemistry, Kongju National University)
  • Received : 2015.06.28
  • Accepted : 2015.09.18
  • Published : 2016.02.10

Abstract

In this work, we describe the synthesis and infrared light reflecting characteristics of $TiO_2$/mica hybrid composites. $TiO_2$/mica composite materials were obtained by the hydrolysis and condensation reaction of titanium isopropoxide in an aqueous solution of acetic acid in the presence of mica particles. Amorphous phase of $TiO_2$ on the surface of mica was converted to the crystalline rutile phase via anatase phase by heat treatment ($600-1000^{\circ}C$, 1-3 h) of $TiO_2$/mica composite materials, and the size of crystals was controlled by heat treatment conditions. Physicochemical properties of mica and $TiO_2$/mica composites were investigated using FE-SEM, ED-XRF, and PXRD. The solar reflectance of $TiO_2$/mica composites in the near IR region (780~2,500 nm) measured using a diffuse reflectance NIR spectrophotometer was 88.6%, which is rather higher than that of calcined pure mica (86.6%). Therefore, $TiO_2$/mica composites can be used as NIR light reflective pigments.

본 연구에서는 $TiO_2$/마이카 혼성 복합 재료의 합성과 적외선 반사 특성에 관한 연구를 수행하였다. 마이카 입자의 존재 하에 아세트산 수용액에서 titanium isopropoxide의 가수 분해 반응과 축합 반응에 의해 $TiO_2$/마이카 복합 재료를 합성하였다. $TiO_2$/마이카 복합 재료의 열처리($600{\sim}1000^{\circ}C$, 1~3 h)에 의해 마이카 표면에 형성된 비결정성 상의 $TiO_2$은 anatase 상을 거쳐 결정성 rutile 상으로 전환되었으며 열처리 조건에 의해 결정의 크기가 제어되었다. FE-SEM 분석, ED-XRF 분석, XRPD 분석을 통하여 마이카와 $TiO_2$/마이카 복합 재료의 물리화학적 특성을 규명하였다. 확산 반사-근적외선 분광 분석을 통하여 측정한 $TiO_2$/마이카 혼성 복합 재료의 근적외선 범위(780~2,500 nm)에서의 일사 반사율은 88.6%로, 순수한 소성 마이카의 86.6%보다 다소 높았다. 따라서 $TiO_2$/마이카 혼성 복합 재료는 높은 광반사율을 나타내는 차열 도료의 안료로 사용할 수 있을 것이다.

Keywords

References

  1. I. E. Kochevar, M. A. Pathak, and J. A. Parrish, Photophysics, photochemistry, and photobiology. In: I. M. Freedberg, A. Z. Eisen, S. I. Katz, K. Wolff, L. A. Goldsmith, K. F. Austen, and T. B. Fitzpatrick (eds.). Fitzpatrick's Dermatology in General Medicine, 5th ed. 220-229, McGraw-Hill, New York, USA (1999).
  2. H. H. Kim, Urban heat island, Int. J. Remote Sensing, 13, 2319-2336 (1992). https://doi.org/10.1080/01431169208904271
  3. Y. Matsuo, New developments of high-reflective materials, 3-12, CMC, Tokyo, Japan (2010).
  4. M. Dahl, Y. Liu, and Y. Yin, Composite titanium dioxide nanomaterials, Chem. Rev., 114, 9853-9889 (2014). https://doi.org/10.1021/cr400634p
  5. L. Sang, Y. Zhao, and C. Burda, $TiO_2$ nanoparticles as functional building blocks, Chem. Rev., 114, 9283-9318 (2014). https://doi.org/10.1021/cr400629p
  6. M. Cargnello, T. R. Gordon, and C. B. Murray, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev., 114, 9319-9345 (2014). https://doi.org/10.1021/cr500170p
  7. P. Jeevanandam, R. S. Mulukutla, M. Phillips, S. Chaudhuri, L. E. Erickson, and K. J. Klabunde, Near infrared reflectance properties of metal oxide nanoparticles, J. Phys. Chem. C, 111, 1912-1918 (2007). https://doi.org/10.1021/jp066363o
  8. H. -X. Wu, T. -J. Wang, and Y. Jin, Morphology "phase diagram" of the hydrous alumina coating on $TiO_2$ particles during aqueous precipitation, Ind. Eng. Chem. Res., 45, 5274-5278 (2006). https://doi.org/10.1021/ie0601910
  9. J. Zou, P. Zhang, C. Liu, and Y. Peng, Highly dispersed (Cr,Sb)-co-doped rutile pigments of cool color with high near-infrared reflectance, Dyes Pigm., 109, 113-119 (2014). https://doi.org/10.1016/j.dyepig.2014.05.009
  10. H. R. Hedayati, A. A. S. Alvani, H. Sameie, R. Salimi, S. Moosakhani, F. Tabatabaee, and A. A. Zarandi, Synthesis and characterization of $Co_{1-x}Zn_xCr_{2y}Al_yO_4$ as a near-infrared reflective color tunable nano-pigment, Dyes Pigm., 113, 588-595 (2015). https://doi.org/10.1016/j.dyepig.2014.09.030
  11. S. Jose, A. Prakash, S. Laha, S. Natarajan, and M. L. Reddy, Green colored nano-pigments derived from $Y_2BaCuO_5$: NIR reflective coatings, Dyes Pigm., 107, 118-126 (2014). https://doi.org/10.1016/j.dyepig.2014.03.025
  12. S. Kumar, N. K. Verma, and M. L. Singla, Study on reflectivity and photostability of Al-doped $TiO_2$ nanoparticles and their reflectors, J. Mater. Res., 28, 521-528 (2013). https://doi.org/10.1557/jmr.2012.361
  13. N. Kiomarsipour, R. S. Razavi, K. Ghani, and M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270 33-38 (2013). https://doi.org/10.1016/j.apsusc.2012.11.167
  14. J. Panpranot, K. Kontapakdee, and P. Praserthdam, Effect of $TiO_2$ crystalline phase composition on the physicochemical and catalytic properties of Pd/$TiO_2$ in selective acetylene hydrogenation, J. Phys. Chem. B, 110, 8019-8024 (2006). https://doi.org/10.1021/jp057395z
  15. S. Yang, Y. C. Zheng, Y. Hou, X. H. Yang, and H. G. Yang, Anatase $TiO_2$ with nanopores for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 16, 23038-23043 (2014). https://doi.org/10.1039/C4CP02522A
  16. V. N. Koparde and P. T. Cummings, Phase transformations during sintering of titania nanoparticles, ACS Nano, 2, 1620-1624 (2008). https://doi.org/10.1021/nn800092m
  17. S. Kumar, N. K. Verma, and M. L. Singla, Size dependent reflective properties of $TiO_2$ nanoparticles and reflectors made thereof, Dig. J. Nanomater. Bios., 7, 607-619 (2012).
  18. W. E. Vargas, Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering, J. Appl. Phys., 88, 4079-4084 (2000). https://doi.org/10.1063/1.1289230
  19. J. -M. Oh, T. T. Biswick, and J. -H. Choy, Layered nanomaterials for green materials, J. Mater. Chem., 19, 2553-2563 (2009). https://doi.org/10.1039/b819094a
  20. M. I. Carretero and M. Pozo, Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II. Active ingredients, Appl. Clay Sci., 47 171-181 (2010). https://doi.org/10.1016/j.clay.2009.10.016
  21. P. M. T. Cavalcante, M. Dondi, G. Guarini, F. M. Barros, and A. B. da Luz, Ceramic application of mica titania pearlescent pigments, Dyes Pigm., 74, 1-8 (2007). https://doi.org/10.1016/j.dyepig.2006.01.026
  22. H. H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: A general overview, Appl. Clay Sci., 17, 207-221 (2000). https://doi.org/10.1016/S0169-1317(00)00016-8
  23. Q. Gao, X. Wu, and Y. Fan, Solar spectral optical properties of rutile $TiO_2$ coated mica-titania pigments, Dyes Pigm., 109, 90-95 (2014). https://doi.org/10.1016/j.dyepig.2014.04.028
  24. T. Kaneko, M. Fujii, T. Kodama, and Y. Kitayama, Synthesis of titania pillared mica in aqueous solution of acetic acid, J. Porous Mater., 8, 99-109 (2001). https://doi.org/10.1023/A:1009634506284
  25. C. Marcos, Y. C. Arango, and I. Rodriguez, X-ray diffraction studies of the thermal behaviour of commercial vermiculites, Appl. Clay Sci., 42, 368-378 (2009). https://doi.org/10.1016/j.clay.2008.03.004
  26. J. -H. Yang, H. Piao, A. Vinu, A. A. Elzatahry, S. -M. Paek, and J. -H. Choy, $TiO_2$-pillared clays with well-ordered porous structure and excellent photocatalytic activity, RSC Adv., 5, 8210-8215 (2015). https://doi.org/10.1039/C4RA12880J
  27. E. Finocchio, I. Baccini, C. Cristiani, G. Dotelli, P. G. Stampino, and L. Zampori, Hybrid organo-inorganic clay with nonionic interlayers. Mid- and near-IR spectroscopic studies, J. Phys. Chem. A, 115, 7484-7493 (2011). https://doi.org/10.1021/jp200845e
  28. J. G. P. W. Clevers, L. Kooistra, and M. E. Schaepman, Using spectral information from the NIR water absorption features for the retrieval of canopy water content, Int. J. Appl. Earth Obs. Geoinf. 10, 388-397 (2008). https://doi.org/10.1016/j.jag.2008.03.003
  29. T. Thongkanluang, N. Chirakanphaisarn, and P. Limsuwan, Preparation of NIR reflective brown pigment, Procedia Eng., 32, 895-901 (2012). https://doi.org/10.1016/j.proeng.2012.02.029

Cited by

  1. 나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성 vol.31, pp.1, 2016, https://doi.org/10.14478/ace.2019.1105