DOI QR코드

DOI QR Code

Thermal and Rheological Studies of Ricinodendron Heudelotii Wood for Its Pulp Production Potential

  • Ogunleye, Bolade Mercy (Department of Wood and Paper Technology, Federal College of Forestry) ;
  • Fabiyi, James Sunday (Department of Forestry and Wood Technology, Federal University Technology) ;
  • Fuwape, Joseph A. (Department of Forestry and Wood Technology, Federal University Technology)
  • Received : 2016.05.17
  • Accepted : 2016.07.21
  • Published : 2016.11.30

Abstract

Thermal stability and rheological behaviors of Ricinodendron heudelotii wood were investigated. Thermogravimetric analysis conducted at a heating rate of $10^{\circ}C/min$ from 20 to $600^{\circ}C$ in a nitrogen atmosphere indicated that there was no variation in the decomposition of the onset and final temperature for all the polymers. The thermal behaviours were investigated at a temperature range from 130 to $0^{\circ}C$ at $3^{\circ}C/min$, multi-frequencies of 0.1-10 Hz using dynamic mechanical analysis. N-methyl-2-pyrolidone saturated specimens were tested while submerged under the same solvent. Polymers decomposition pattern during thermogravimetric analysis are similar in the radial position of the wood. The glass transition temperature (Tg) of R. heudelotii is $45{\pm}1^{\circ}C$ at 0.1 Hz. The Tg differs from the innerwood to outerwood. The Tg showed that N-methyl-2-pyrolidone saturated R. heudelotii would require low energy consumption during chemi-thermomechanical pulping.

Keywords

References

  1. Bajpai P. 2013. Recycling and deinking of recovered paper. Elsevier Science, Amsterdam, pp 240.
  2. Beall FC, Eickner HW. 1970. Thermal degradation of wood components: a review of the literature. Forest Products Laboratory, Madison, 130.
  3. Blechschmidt J, Engert P, Stephan M. 1986. The glass transition of wood from the viewpoint of mechanical pulping. Wood Sci Technol 20: 263-272.
  4. Bourgois J, Bartholin MC, Guyonnet R. 1989. Thermal treatment of wood: Analysis of the obtained product. Wood Sci Technol 23: 303-310. https://doi.org/10.1007/BF00353246
  5. Chowdhury S, Fabiyi JS, Frazier CE. 2010. Advancing the dynamic mechanical analysis of biomass: comparison of tensile-torsion and compressive-torsion wood DMA. Holzforschung 64:747-756.
  6. Cosyns H, Degrande A, De Wulf R, Van Damme P, Tchoundjeu Z. 2011. Can commercialization of NTFPs alleviate poverty? A case study of Ricinodendron heudelotii (Baill.) Pierre ex Pax. kernel marketing in Cameroon. J Agriculture Rural Development Trop Subtropics 112: 45-56.
  7. Eriksson I, Haglind I, Lidbrandt O, Salnen, L. 1991. Fiber swelling favoured by lignin softening. Wood Sci Technol 25: 135-144.
  8. Fabiyi JS, Fuwape JA, Olufemi B. 2011. Surface chemistry and thermo-mechanical analysis of some Nigerian wood species. Thermochimica Acta 524: 80-87. https://doi.org/10.1016/j.tca.2011.06.018
  9. Golnaz JM. 2007. Macromolecular dynamics in the plant cell wall and its wall polymers. L2P Universite Paul Sabatier Toulouse III, 186 pp.
  10. Hill CAS. 2006. Wood modification: chemical, thermal and other processes. John Wiley, London.
  11. Irvine GM. 1985. The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol 19: 139-149. https://doi.org/10.1007/BF00353074
  12. Izekor DN 2010. Physico-mechnaical characteristics and anatomy of teak (Tectona grandis L.F.) wood grown in Edo State, Nigeria. Ph.D. dissertation submitted to Dept of Forestry and Wood Technology, Federal University of Technology, Akure, Nigeria. 225 pp.
  13. Kim HS, Kim S, Kim HJ, Yang HS. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451: 181-188. https://doi.org/10.1016/j.tca.2006.09.013
  14. Markets Initiative. 2007. Environmental leadership in the paper supply chain. The new paper fibre basket. Trend Report. pp 9.
  15. Menard KP. 2008. Dynamic mechanical analysis: a practical introduction. Boca Raton, CRC Press. Florida, USA.
  16. Mollet M, Tiki Manga T, Kengue J, Tchoundjeu Z. 1995. The 'top 10' species in Cameroon: a survey of farmers' views on trees. Agrofor Today 7: 14-16.
  17. Nassar MM, Mackay GDM. 1984. Mechanism of thermal decomposition of lignin. Wood Fiber Sci 16: 441-453.
  18. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S. 2009. Agroforest tree database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. Accessed 22 Mar 2016.
  19. Pettersen RC. 1984. The chemical composition of wood. In: The chemistry of solid wood (Rowell RM, ed). American Chemical Society, Washington, D.C., 207: pp 57-126.
  20. Plenderleith K. 2004. Njansang (Ricinodendron heudelotii subsp. africanum). In: The key non-timber forest products of central Africa: state of the knowledge. (Clark LE, Sunderland TCH, eds.). Technical Paper No 122, Mitchell Group, Inc., US-AID, pp 63-86.
  21. Salmen L. 1984. Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19: 3090-3096. https://doi.org/10.1007/BF01026988
  22. Shebani AN, van Reenen AJ, Meincken M. 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471: 43-50. https://doi.org/10.1016/j.tca.2008.02.020
  23. Uhmeier A, Morooka T, Norimoto M. 1998. Influence of thermal softening and degradation on the radial compression behavior of wet Spruce. Holzforsch 52: 77-81. https://doi.org/10.1515/hfsg.1998.52.1.77
  24. Zhang RQ. 2004. Biomass derived fuel and chemical. Zhengzhou University Press, Zhengzhou, China.