DOI QR코드

DOI QR Code

Ultraviolet Blocking Material Based on Silver-doped Hydroxyapatite

수산화인회석에 은이 도입된 자외선차단재료

  • Pyo, Eunji (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kim, Youngyong (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
  • 표은지 (경상대학교 화학과, 경상대 기초과학연구소) ;
  • 김영용 (경상대학교 화학과, 경상대 기초과학연구소) ;
  • 권기영 (경상대학교 화학과, 경상대 기초과학연구소)
  • Received : 2016.10.20
  • Accepted : 2016.11.01
  • Published : 2016.12.10

Abstract

Hydroxyapatite (HAP) was prepared by a hydrothermal synthesis method and also silver was introduced on the surface of HAP through an ion exchange reaction. The crystal phase and morphology of HAP were then evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the absorption property of HAP was characterized by diffuse reflectance UV-Vis spectroscopy. The presence of silver nanoparticles on the surface of HAP was also verified by XRD and TEM analysis. Particularly, the silver doped HAP showed an enhanced absorption property in UV-Vis region compared to that of the pristine HAP.

본 연구에서는 수열합성법을 이용하여 수산화인회석을 합성하였다. 또한 이온 교환 반응을 통하여 수산화인회석 표면에 은을 도입하였다. 합성된 샘플의 결정성과 형태를 X-선 회절 분석과 투과전자현미경을 통하여 분석하였으며, 산란 반사 UV-vis 스펙트럼을 통하여 합성한 샘플의 광학적 특성을 조사하였다. 은이 도핑된 수산화인회석의 경우 은이 수산화인회석 표면에 나노입자 형태로 존재한다는 것을 X-선 회절 분석과 투과전자현미경 실험으로 확인하였다. 특히 수산화인회석과 비교하여 은 나노 입자가 도입된 수산화인회석의 경우에는 UV-Vis 영역에서 높은 흡광도를 나타내었다.

Keywords

References

  1. S. E. Ullrich, Sunlight and skin cancer: Lessons from the immune system, Mol. Carcinog., 46, 629-633 (2007). https://doi.org/10.1002/mc.20328
  2. B. K. Armstrong, A. Kricker, and X. Wang, The epidemiology of UV induced skin cancer, J. Photochem. Photobiol. B, 63, 8-18 (2001). https://doi.org/10.1016/S1011-1344(01)00198-1
  3. S. Briganti and M. Picardo, Antioxidant activity, lipid peroxidation and skin diseases. What's new, J. Eur. Acad. Dermatol. Venereol., 17, 663-669 (2003). https://doi.org/10.1046/j.1468-3083.2003.00751.x
  4. M. Yaar and B. A. Gilchrest, Photoageing: Mechanism, prevention and therapy, Br. J. Dermatol., 157, 874-887 (2007). https://doi.org/10.1111/j.1365-2133.2007.08108.x
  5. K. Ito and S. Kawanishi, Site-specific DNA damage induced by UVA radiation in the presence of endogenous photosensitizer, Biol. Chem., 378, 1307-1312 (1997).
  6. N. A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A. O. Inman, and J. E. Riviere, Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study, Toxicol. Sci., 123, 264-280 (2011). https://doi.org/10.1093/toxsci/kfr148
  7. B. Gulson, M. McCall, M. Korsch, L. Gomez, P. Casey, Y. Oytam, A. Taylor, M. McCulloch, J. Trotter, L. Kinsley, and G. Greenoak, Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin, Toxicol. Sci., 118, 140-149 (2010). https://doi.org/10.1093/toxsci/kfq243
  8. M. J. Osmond and M. J. McCall, Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard, Nanotoxicology, 4, 15-41 (2010). https://doi.org/10.3109/17435390903502028
  9. M. J. Osmond-Mcleod, Y. Oytam, J. K. Kirby, L. Gomez-Fernandez, B. Baxter, and M. J. McCall, Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles, Nanotoxicology, 8, 72-84 (2014).
  10. M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964). https://doi.org/10.1038/2041050a0
  11. W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998). https://doi.org/10.1557/JMR.1998.0015
  12. G. Wei and P. X. Ma, Structure and properties of nano-ydroxyapatite/ polymer composite scaffolds for bone tissue engineering, Biomaterials, 25, 4749-4757 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.005
  13. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004) https://doi.org/10.1021/ja0488683
  14. J. W. Jaworski, S. Cho, Y. Kim, J. H. Jung, H. S. Jeon, B. K. Min, and K. Y. Kwon, Hydroxyapatite supported cobalt catalysts for hydrogen generation, J. Colloid Interface Sci., 394, 401-408 (2013). https://doi.org/10.1016/j.jcis.2012.11.036
  15. S. Kim, J. H. Jung, D. H. Kim, D. K. Woo, J. B. Park, M. Y. Choi, and K. Y. Kwon, Preparation of ruthenium incorporated heterogeneous catalysts using hydroxyapatite as catalytic supports for aerobic oxidation of alcohols, Bull. Korean Chem. Soc., 34, 221-224 (2013). https://doi.org/10.5012/bkcs.2013.34.1.221
  16. R. M. Amin, S. A. Elfeky, T. Verwanger, and B. Krammer, A new biocompatible nanocomposite as a promising constituent of sunscreens, Mater. Sci. Eng. C, 63, 46-51 (2016). https://doi.org/10.1016/j.msec.2016.02.044
  17. C. Piccirillo, C. Rocha, D. M. Tobaldi, R. C. Pullar, J. A. Labrincha, M. O. Ferreira, P. M. L. Castro, and M. M. E. Pintado, A hydroxyapatite-Fe2O3 based material of natural origin as an active sunscreen filter, J. Mater. Chem. B, 2, 5999-6009 (2014). https://doi.org/10.1039/C4TB00984C
  18. T. S. De Araujo, S. O. De Souza, W. Miyakawa, and E. M. B. De Sousa, Phosphates nanoparticles doped with zinc and manganese for sunscreens, Mater. Chem. Phys., 124, 1071-1076 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.034