DOI QR코드

DOI QR Code

파형 신호에 대한 다양체 임베딩의 위상학적 불변항의 분석

Analysis of Topological Invariants of Manifold Embedding for Waveform Signals

  • 한희일 (한국외국어대학교 정보통신공학과)
  • Hahn, Hee-Il (Dept. of Information and Communications Engineering, Hankuk University of Foreign Studies)
  • 투고 : 2015.12.16
  • 심사 : 2016.02.05
  • 발행 : 2016.02.29

초록

본 논문에서는 임의의 주기적인 현상이나 특성은 위상구조와 밀접한 관련이 있음을 추론하고 이를 실험적으로 확인한다. 실험대상으로 주기적 특성이 있는 다양한 악기음을 선택하여 이를 유클리드 공간에 임베딩하고 이로부터 호몰로지 군을 계산하여 위상특성을 분석한다. 이를 위하여, 파형신호에서 추출한 패치모음을 패치 그래프로 구성한 다음, 대표적인 다양체 학습 방식인 통근시간 임베딩 기법을 이용하여 기하구조로 변환한다. 스펙트럼이 시간에 따라 가변적인 파형신호를 통근시간 임베딩할 때, 그에 따라 생성되는 기하구조는 변화하지만 그 신호 고유의 내재된 위상구조는 거의 변하지 않는다. 본 논문에서는 임베딩 데이터의 일부를 표본화하여 단순 복합체를 구성한 다음 이로부터 호몰로지를 계산하여 임베딩 기하구조의 위상특성을 분석하고, 이의 활용방안을 논의한다.

This paper raises a question of whether a simple periodic phenomenon is associated with the topology and provides the convincing answers to it. A variety of music instrumental sound signals are used to prove our assertion, which are embedded in Euclidean space to analyze their topologies by computing the homology groups. A commute time embedding is employed to transform segments of waveforms into the corresponding geometries, which is implemented by organizing patches according to the graph-based metric. It is shown that commute time embedding generates the intrinsic topological complexities although their geometries are varied according to the spectrums of the signals. This paper employs a persistent homology to determine the topological invariants of the simplicial complexes constructed by randomly sampling the commute time embedding of the waveforms, and discusses their applications.

키워드

참고문헌

  1. M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Computation15(6), pp.1373-1396, 2003. https://doi.org/10.1162/089976603321780317
  2. G. Carlsson, T. Ishkhanov, V. deSilva and A. Zomorodian, "On the local behavior of spaces of natural images," International Journal on Computer Vision, 2004.
  3. H. Chintakunta and H. Krim "Distributed localization of coverage holes using topological persistence," IEEE Trans. Signal Processing, Vol.62, No. 10, pp. 2531-2541, May 2014. https://doi.org/10.1109/TSP.2014.2314063
  4. H. Edelsbrunner, D. Letscher and A. Zomorodian, "Topological persistence and simplification," Discrete Computational Geometry 28, pp. 511-533, 2002. https://doi.org/10.1007/s00454-002-2885-2
  5. H. Hahn, "A Study on classification of waveforms using manifold embedding based on commute time," Journal of the Institute of Electronics and Information Engineers, Vol. 51, No. 2, pp. 148-155, 2014. https://doi.org/10.5573/ieie.2014.51.2.148
  6. H. Hahn, "A Study on Statistical Approach for Nonlinear Image Denoising Algorithms," Journal of the Institute of Internet, Broadcasting and Communication, Vol. 12, No. 1, pp. 157-164, 2012. https://doi.org/10.7236/JIWIT.2012.12.1.157
  7. H. Qiu and E.R. Hancock, "Clustering and embedding using commute times," IEEE Trans. PAMI, Vol. 29, No. 11, Nov. 2007.
  8. S.T. Roweis and L.K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science Vol.290, 2000.
  9. K.M. Taylor, "The geometry of signal and image patch-sets," PhD Thesis, University of Colorado, Boulder, Dept. of Applied Mathematics, June 2011.
  10. J.B. Tenenbaum, V. deSilva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, Vol. 290, pp.2319-2323, 2000. https://doi.org/10.1126/science.290.5500.2319
  11. B. Yun, T. An, W. Lee Y. Bong, and Y. Hong, "Image surveillance system using intelligence,"Journal of the Institute of Internet, Broadcasting and Communication, Vol. 9, No. 5, pp. 123-127, 2009.
  12. A. Zomorodian and G.Carlsson, "Computing persistent homology," Discrete Computational Geometry 33, pp. 249-274, 2005. https://doi.org/10.1007/s00454-004-1146-y