DOI QR코드

DOI QR Code

Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite

  • Jia, Yuefa (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies) ;
  • Liu, Chunli (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies) ;
  • Li, Rong (Research Center of Nano Science and Technology, Shanghai University)
  • Received : 2015.12.30
  • Accepted : 2016.02.11
  • Published : 2016.03.31

Abstract

$Fe_2O_3/TiO_2$ nanocomposite were successfully synthesized by co-precipitation method using $Fe(NO_3)_3{\cdot}9H_2O$ and $Ti(SO_4)_2$ as raw materials. Structural and textural features of the mixed oxide samples were characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray. The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the photocatalytic degradation rate of OTC by the $Fe_2O_3/TiO_2$ nanocomposite were analyzed under UV and visible light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the best photocatalytic efficiency. $Cu^{2+}$, $NH_4{^+}$, $C_3H_8O$ and EDTA in the aqueous suspension were found to suppress the degradation rate of OTC, whereas the effect of $NO_3{^-}$ and $H_2C_2O_4$ can be ignored.

Keywords

References

  1. A. K. Singh, G. Rathore, V. Sing, I. Mani, R. K. Singh, S. K. Mishra, B. N. Mishra, and O. P. Verma, Int. J. Microbiol. Res. 1, 25 (2009). https://doi.org/10.9735/0975-5276.1.1.25-34
  2. M. Rabolle and N. H. Spliid, Chemosphere 40, 715 (2000). https://doi.org/10.1016/S0045-6535(99)00442-7
  3. R. Li, Y. F. Jia, J. Wu, and Q. Zhen, RSC Adv. 5, 40764 (2015). https://doi.org/10.1039/C5RA04540A
  4. A. J. Watkinson, E. J. Murbyd, D. W. Kolpine, and S. D. Costanzof, Sci. Total. Environ. 407, 2711 (2009). https://doi.org/10.1016/j.scitotenv.2008.11.059
  5. S. G. Segura and E. Brillas, Water Res. 45, 75 (2011). https://doi.org/10.1016/j.watres.2010.08.019
  6. M. H. Khan, H. Bae, and J. Y. Jung, J. Hazard. Mater. 181, 659 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.063
  7. O. U. Merih and A. K. B. Isil, J. Agric. Food. Chem. 57, 11284 (2009). https://doi.org/10.1021/jf902188j
  8. L. Migliore, M. Fiori, A. Spadoni, and E. Galli, J. Hazard. Mater. 215-216, 227 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.056
  9. L. H. Huang, Y. Y. Sun, W. L. Wang, Q. Y. Yue, and T. Yang, Chem. Eng. J. 171, 1446 (2011). https://doi.org/10.1016/j.cej.2011.05.041
  10. J. H. O. S. Pereira, V. J. P. Vilar, M. T. Borges, O. Gonzalez, S. Esplugas, and R. A. R. Boaventura, Sol. Energy 85, 2732 (2011). https://doi.org/10.1016/j.solener.2011.08.012
  11. C. Zhao, Y. Zhou, D. R. D. Johannes, J. Zhai, D. R. Zhai, J. Y. Wei, and H. P. Deng, Chem. Eng. J. 248, 280 (2014). https://doi.org/10.1016/j.cej.2014.03.050
  12. C. Zhao, H. P. Deng, Y. Li, and Z. H. Liu, J. Hazard. Mater. 176, 884 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.119
  13. J. H. O. S. Pereira, A. C. Reis, D. Queiros, O. C. Nunes, M. T. Borges, V. J. P. Vilar, and R. A. R. Boaventura, Sci. Total. Environ. 463-464, 274 (2013). https://doi.org/10.1016/j.scitotenv.2013.05.098
  14. X. L. Liu, P. Lv, G. X. Yao, C. C. Ma, P. W. Huo, and Y. S. Yan, Chem. Eng. J. 217, 398 (2013). https://doi.org/10.1016/j.cej.2012.12.007
  15. A. K. Tripathi, M. C. Mathpal, P. Kumar, M. K. Singh, S. K. Mishra, R. K. Srivastava, J. S. Chung, G. Verma, M. M. Ahmad, and A. Agarwal. Mat. Sci. Semicon. Proc. 23, 136 (2014). https://doi.org/10.1016/j.mssp.2014.02.041
  16. M. Mishra, H. Park, and D. M. Chun, Adv. Powder Technol (in press). http://dx. doi.org/10.1016/j.apt.2015.11.009.
  17. M. W. Lam, K. Tantuco, and S. A. Mabury, Environ. Sci. Technol. 37, 899 (2003). https://doi.org/10.1021/es025902+
  18. Y. P. Zhao, J. J. Geng, X. R. Wang, X. Y. Gu, and S. X. Gao, J. Colloid and Interf Sci. 361, 247 (2011). https://doi.org/10.1016/j.jcis.2011.05.051
  19. Z. Q. He, X. Xu, S. Song, L. Xie, J. J. Tu, J. M. Chen, and B. Yan, J. Phys. Chem. C 112, 16431 (2008).
  20. S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen, and X. M. Wang, Chem. Eng. J. 203, 432 (2013).
  21. W. Zhou, H. G. Fu, K. Pan, C. G. Tian, Y. Qu, P. P. Lu, and C. C. Sun, J. Phys. Chem. C 112, 19584 (2008). https://doi.org/10.1021/jp806594m
  22. W. Bernd, L. Johannes, B. Philippe, and S. Laura, Environ. Sci. Technol. 30, 2397 (1996). https://doi.org/10.1021/es9508939