Algebraic Kripke-style semantics for an extension of HpsUL, CnHpsUL*

CnHpsUL*을 위한 대수적 크립키형 의미론

  • Yang, Eunsuk (Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University)
  • 양은석 (전북대학교 철학과, 비판적사고와논술연구소)
  • Received : 2015.11.17
  • Accepted : 2016.02.12
  • Published : 2016.02.28

Abstract

This paper deals with Kripke-style semantics for weakening-free non-commutative fuzzy logics. As an example, we consider an algebraic Kripke-style semantics for an extension of the pseudo-uninorm based fuzzy logic HpsUL, $CnHpsUL^*$. For this, first, we recall the system $CnHpsUL^*$, define its corresponding algebraic structures $CnHpsUL^*$-algebras, and algebraic completeness results for it. We next introduce a Kripke-style semantics for $CnHpsUL^*$, and connect it with algebraic semantics.

이 글에서 우리는 약화 없는 비교환적인 퍼지 논리의 크립키형 의미론을 다룬다. 이의 한 예로, 우리는 가-유니놈에 기반한 퍼지 논리 HpsUL의 한 확장 체계인 $CnHpsUL^*$을 위한 대수적 크립키형 의미론을 고려한다. 이를 위하여 먼저 $CnHpsUL^*$ 체계를 소개하고 그에 상응하는 $CnHpsUL^*$-대수를 정의한 후 $CnHpsUL^*$이 대수적으로 완전하다는 것을 보인다. 다음으로 $CnHpsUL^*$을 위한 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다.

Keywords

References

  1. Behounek, L. and Cintula, P. (2006), "Fuzzy logics as the logics of chains", Fuzzy Sets and Systems, 157, pp. 604-610. https://doi.org/10.1016/j.fss.2005.10.005
  2. Cintula, P. (2006) "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
  3. Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbolic Logic, 6, pp. 394-423. https://doi.org/10.1017/S1755020313000099
  4. Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", in F. Montagna (ed.) Petr Hajek on Mathematical Fuzzy Logic, Dordrecht: Springer, pp. 245-290.
  5. Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, in P. Cintula, P. Hajek, and C. Noguera (eds.) Handbook of Mathematical Fuzzy Logic, 1, London: College publications, pp. 103-207.
  6. Diaconescu, D. (2010), "Kripke-style semantics for non-commutative monoidal t-norm logic", Journal of Multiple-Valued Logic and Soft Computing, 16, pp. 247-263.
  7. Diaconescu, D. and Georgescu, G. (2007), "On the forcing semantics for monoidal t-norm based logic", Journal of Universal Computer Science, 13, pp. 1550-1572.
  8. Dunn, J. M. (1976), "A Kripke-style semantics for R-Mingle using a binary accessibility relation", Studia Logica, 35, pp. 163-172. https://doi.org/10.1007/BF02120878
  9. Dunn, J. M. (2000), "Partiality and its Dual", Studia Logica, 66, pp. 5-40. https://doi.org/10.1023/A:1026740726955
  10. Esteva, F. and Godo, L. (2001), "Monoidal t-norm based logic: towards a logic for left-continuous t-norms", Fuzzy Sets and Systems, 124, pp. 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
  11. Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam: Elsevier.
  12. Hajek, P. (2003a), "Fuzzy logics with noncommutative conjunction", Journal of Logic and Computation, 13, pp. 469-479. https://doi.org/10.1093/logcom/13.4.469
  13. Hajek, P. (2003b), "Observations on non-commutative fuzzy logic", Soft Computing, 8, pp. 38-43. https://doi.org/10.1007/s00500-002-0246-y
  14. Metcalfe, G. and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
  15. Metcalfe, G., Olivetti, N., and Gabbay, D. (2009) Proof Theory for Fuzzy Logics, Springer.
  16. Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic $MTL{\forall}$", Studia Logica, 71, pp. 227-245.
  17. Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 49, pp. 629-641. https://doi.org/10.1002/malq.200310068
  18. Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 50, pp. 104-107. https://doi.org/10.1002/malq.200310081
  19. Thomason, R. H. (1969), "A semantic study of constructive falsity", Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 15, pp. 247-257.
  20. Tsinakis, C. and Blount, K. (2003), "The structure of residuated lattices", International Journal of Algebra and Computation, 13, pp. 437-461. https://doi.org/10.1142/S0218196703001511
  21. Wang, S. (2013), "Logics for residuated pseudo-uninorms and their residua", Fuzzy Sets and Systems, 218, pp. 24-31. https://doi.org/10.1016/j.fss.2012.11.018
  22. Wang, S. and Zhao, B. (2009), "HpsUL is not the logic of pseudo-uninorms and their residua", Logic Journal of the IGPL, 17, pp. 413-419. https://doi.org/10.1093/jigpal/jzp023
  23. Yang, E. (2009), "(Star-based) four-valued Kripke-style Semantics for some neighbors of E, R, T", Logique et Analyse, 207, pp. 255-280.
  24. Yang, E. (2012a), "Kripke-style semantics for UL", Korean Journal of Logic, 15 (1), pp. 1-15.
  25. Yang, E. (2012b), "(Star-based) three-valued Kripke-style semantics for pseudo- and weak-Boolean logics", Logic Journal of the IGPL, 20, pp. 187-206. https://doi.org/10.1093/jigpal/jzr030
  26. Yang, E. (2014a), "Algebraic Kripke-style semantics for weakening-free fuzzy logics", Korean Journal of Logic, 17 (1), pp. 181-195.
  27. Yang, E. (2014b), "Algebraic Kripke-style semantics for relevance logics", Journal of Philosophical Logic, 43, pp. 803-826. https://doi.org/10.1007/s10992-013-9290-6