DOI QR코드

DOI QR Code

Effect of L- or DL-methionine Supplementation on Nitrogen Retention, Serum Amino Acid Concentrations and Blood Metabolites Profile in Starter Pigs

  • Tian, Q.Y. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Zeng, Z.K. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Zhang, Y.X. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Long, S.F. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Piao, X.S. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University)
  • Received : 2015.09.03
  • Accepted : 2016.01.16
  • Published : 2016.05.01

Abstract

The objective of the current study was to evaluate the effect of supplementation of either L-methionine (L-Met) or DL-methionine (DL-Met) to diets of starter pigs on nitrogen (N) balance, metabolism, and serum amino acid profile. Eighteen crossbred ($Duroc{\times}Landrace{\times}Yorkshire$) barrows weighing $15.45{\pm}0.88kg$ were randomly allotted to 1 of 3 diets with 6 pigs per treatment. The diets included a basal diet (Met-deficient diet) containing 0.24% standardized ileal digestibility Met with all other essential nutrients meeting the pig's requirements. The other two diets were produced by supplementing the basal diet with 0.12% DL-Met or L-Met. The experiment lasted for 18 days, consisting of a 13-day adaptation period to the diets followed by a 5-day experimental period. Pigs were fed ad libitum and free access to water throughout the experiment. Results showed that the supplementation of either L-Met or DL-Met improved N retention, and serum methionine concentration, and decreased N excretion compared with basal diet (p<0.01). The N retention of pigs fed diets supplemented with the same inclusion levels of DL-Met or L-Met were not different (p>0.05). In conclusion, on equimolar basis DL-Met and L-Met are equally bioavailable as Met sources for starter pigs.

Keywords

References

  1. AOAC. 2007. Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists, Arlington VA, USA.
  2. Ball, R. O., G. Courtney-Martin, and P. B. Pencharz. 2006. The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J. Nutr. 136:1682S-1693S. https://doi.org/10.1093/jn/136.6.1682S
  3. Brown, J. A. and T. R. Cline. 1974. Urea excretion in the pig: an indicator of protein quality and amino acid requirements. J. Nutr. 104:542-545. https://doi.org/10.1093/jn/104.5.542
  4. Chen, Y., D. Li, Z. Dai, X. Piao, Z. Wu, B. Wang, Y. Zhu, and Z. Zeng. 2014. L-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 46:1131-1142. https://doi.org/10.1007/s00726-014-1675-5
  5. Cho, E. S., D. W. Andersen, L. J. Filer, and L. D. Stegink. 1980. D-methionine utilization in young miniature pigs, adult rabbits, and adult dogs. J. Parenter. Enteral. Nutr. 4:544-547. https://doi.org/10.1177/0148607180004006544
  6. Christensen, A. C., J. O. Anderson, and D. C. Dobson, 1980. Factors affecting efficacy of methionine hydroxy analogue for chicks fed amino acid diets. Poult. Sci. 59:2480-2484. https://doi.org/10.3382/ps.0592480
  7. Chung, T. K. and D. H. Baker. 1992. Utilization of methionine isomers and analogs by the pig. Can. J. Anim. Sci. 72:185-188. https://doi.org/10.4141/cjas92-024
  8. Coma, J., D. Carrion, and D. R. Zimmerman. 1995. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs. J. Anim. Sci. 73:472-481. https://doi.org/10.2527/1995.732472x
  9. Cromwell, G. L. 2004. Identifying the limiting amino acids in complex and cereal grain-based diets to minimize nitrogen excretion. In Midwest Swine Nutr. Conf. Proc. Indianapolis, IN, USA. The Ohio Univ. Press, Columbus, OH, USA. pp. 69-83.
  10. Dibner, J. J. and F. J. Ivey. 1992. Capacity in the liver of the broiler chick for conversion of supplemental methionine activity to L-methionine. Poult. Sci. 71:700-708. https://doi.org/10.3382/ps.0710700
  11. Dilger, R. N. and D. H. Baker. 2007. DL-Methionine is as efficacious as L-methionine, but modest L-cystine excesses are anorexigenic in sulfur amino acid-deficient purified and practical-type diets fed to chicks. Poult. Sci. 86:2367-2374. https://doi.org/10.3382/ps.2007-00203
  12. Fang, Z., H. Luo, H. Wei, F. Huang, Z. Qi, S. Jiang, and J. Peng. 2010. Methionine metabolism in piglets fed DL-methionine or its hydroxy analogue was affected by distribution of enzymes oxidizing these sources to keto-methionine. J. Agric. Food Chem. 58:2008-2014. https://doi.org/10.1021/jf903317x
  13. Finkelstein, J. D. 1990. Methionine metabolism in mammals. J. Nutr. Biochem. 1:228-237. https://doi.org/10.1016/0955-2863(90)90070-2
  14. Gomes, J. and D. Kumar. 2005. Production of L-methionine by submerged fermentation: A review. Enzyme Microb. Tech. 37:3-18. https://doi.org/10.1016/j.enzmictec.2005.02.008
  15. Garlich, J. D. 1985. Response of broilers to DL-methionine hydroxy analog free acid, DL-methionine, and L-methionine. Poult. Sci. 64:1541-1548. https://doi.org/10.3382/ps.0641541
  16. Ikeda, M. 2003. Amino acid production processes. In: Microbial Production of L-amino Acids. Springer Berlin Heidelberg, Germany. pp. 1-35.
  17. Katz, R. S. and D. H. Baker. 1975. Efficacy of D-, L- and DLmethionine for growth of chicks fed crystalline amino acid diets. Poult. Sci. 54:1667-1674. https://doi.org/10.3382/ps.0541667
  18. Kim, K. I. and H. S. Bayley. 1983. Amino acid oxidation by young pigs receiving diets with varying levels of sulphur amino acids. Br. J. Nutr. 50:383-390. https://doi.org/10.1079/BJN19830105
  19. Kim, S. Y., K. M. Cho, Y. U. Shin, H. W. Um, K. O. Choi, J. S. Chang, Y. W. Cho, and Y. H. Park. 2015. Microorganism producing L-methionine precursor and method of producing Lmethionine and organic acid from the L-methionine precursor. US Patent 9029105.
  20. Kumar, D. and J. Gomes. 2005. Methionine production by fermentation. Biotechnol. Adv. 23:41-61. https://doi.org/10.1016/j.biotechadv.2004.08.005
  21. Mannsfeld, S. P., A. Pfeiffer, H. Tanner, H. Wagner, and E. Liebertanz. 1978. Continuous process for the manufacture of methionine. US Patent 04069251.
  22. Martin-Venegas, R., P. A. Geraert, and R. Ferrer. 2006. Conversion of the methionine hydroxy analogue DL-2-hydroxy-(4-methylthio) butanoic acid to sulfur-containing amino acids in the chicken small intestine. Poult. Sci. 85:1932-1938. https://doi.org/10.1093/ps/85.11.1932
  23. Metayer, S., I. Seiliez, A. Collin, S. Duchene, Y. Mercier, P. A. Geraert, and S. Tesseraud. 2008. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J. Nutr. Biochem. 19:207-215. https://doi.org/10.1016/j.jnutbio.2007.05.006
  24. NRC. 1998. Nutrient Requirements of Swine, 10th edition. National Academic Press, Washington, DC, USA.
  25. Odunfa, S. A., S. A. Adeniran, O. D. Teniola, and J. Nordstrom. 2001. Evaluation of lysine and methionine production in some lactobacilli and yeasts from Ogi. Int. J. Food Microbiol. 63:159-163. https://doi.org/10.1016/S0168-1605(00)00320-2
  26. Riedijk, M. A., B. Stoll, S. Chacko, H. Schierbeek, A. L. Sunehag, J. B. van Goudoever, and D. G. Burrin. 2007. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc. Natl. Acad. Sci. USA. 104:3408-3413. https://doi.org/10.1073/pnas.0607965104
  27. Shen, Y. B., A. C. Weaver, and S. W. Kim. 2014. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine. J. Anim. Sci. 92:5530-5539. https://doi.org/10.2527/jas.2014-7830
  28. Shoveller, A. K., J. A. Brunton, J. D. House, P. B. Pencharz, and R. O. Ball. 2003. Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J. Nutr. 133:4215-4224. https://doi.org/10.1093/jn/133.12.4215
  29. Shoveller, A. K., B. Stoll, R. O. Ball, and D. G. Burrin. 2005. Nutritional and functional importance of intestinal sulfur amino acid metabolism. J. Nutr. 135:1609-1612. https://doi.org/10.1093/jn/135.7.1609
  30. Stoll, B., J. Henry, P. J. Reeds, H. Yu, F. Jahoor, and D. G. Burrin. 1998. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 128:606-614. https://doi.org/10.1093/jn/128.3.606
  31. Tipton, H. C., B. C. Dilworth, and E. J. Day. 1966. A comparison of D-, L-, DL-methionine and methionine hydroxy analogue calcium in chick diets. Poult. Sci. 45:381-387. https://doi.org/10.3382/ps.0450381
  32. Zhang, S., S. Qiao, M. Ren, X. Zeng, X. Ma, Z. Wu, P. Thacker, and G. Wu. 2013. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191-1205. https://doi.org/10.1007/s00726-013-1577-y

Cited by

  1. Effects of L-methionine on performance, gut morphology and antioxidant status in gut and liver of piglets in relation to DL-methionine pp.09312439, 2018, https://doi.org/10.1111/jpn.13000
  2. Effects of dietary methionine supplementation on growth performance, intestinal morphology, antioxidant capacity and immune function in intra‐uterine growth‐retarded suckling piglets vol.103, pp.3, 2019, https://doi.org/10.1111/jpn.13084
  3. Supplementing Synbiotic in Sows' Diets Modifies Beneficially Blood Parameters and Colonic Microbiota Composition and Metabolic Activity in Suckling Piglets vol.7, pp.None, 2016, https://doi.org/10.3389/fvets.2020.575685
  4. Maternal supplementation with uridine influences fatty acid and amino acid constituents of offspring in a sow-piglet model vol.125, pp.7, 2021, https://doi.org/10.1017/s0007114520003165
  5. Effects of supplemental D-methionine in comparison to L-methionine on nitrogen retention, gut morphology, antioxidant status, and mRNA abundance of amino acid transporter vol.99, pp.9, 2021, https://doi.org/10.1093/jas/skab248