References
- ASTM C150 (2001), "Standard specification for Portland cement, Annual Book of ASTM Standards", ASTM, Philadelphia, PA, USA.
- ASTM C778 (2011), "Standard specification for standard sand, annual book of ASTM standards", ASTM, Philadelphia, PA, USA.
- Calisir, D. and Doğantekin, E. (2011), "An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier", Exp. Syst. Appl., 38(7), 8311-8315. https://doi.org/10.1016/j.eswa.2011.01.017
- Cevik, A., Kurtoglu, A.E., Bilgehan, M., Gulsan, M.E. and Albegmprli, H.M. (2015), "Support vector machines in structural engineering: a review", J. Civil Eng. Manag., 21(3), 261-281. https://doi.org/10.3846/13923730.2015.1005021
- Chitti, H., Khatibinia, M., Akbarpour, A. and Naseri, H.R. (2016), "Reliability-based design optimization of concrete gravity dams using subset simulation", Int. J. Optim. Civil. Eng., 6(3), 329-348.
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civ. Eng., 25(3), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
- EFNARC (2002), "Specification and guidelines for self-compacting concrete", UK.
- Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intell., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014
- Gharehbaghi, S. and Khatibinia, M. (2015), "Optimal seismic design of reinforced concrete structures under time history earthquake loads using an intelligent hybrid algorithm", Earth. Eng. Eng. Vib., 14(1), 97-109. https://doi.org/10.1007/s11803-015-0009-2
- Guang, N.H. and Zong, W.J. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
-
Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing
$SiO_2$ micro and nanoparticles", Mater. Des., 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037 - Kecman, V. (2001), "Leaming and soft computing: Support vector machines, neural networks, and fuzzy logic models", The MIT Press, Cambridge, Massachusetts, London, England.
- Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through articial neural networks", Automat. Constr., 15(3), 374-379. https://doi.org/10.1016/j.autcon.2005.07.003
- Khatibinia, M. and Khosravi, S. (2014), "A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams", Appl. Soft Comput., 16, 223-233. https://doi.org/10.1016/j.asoc.2013.12.008
- Khatibinia, M., Chitti, H., Akbarpour, A. and Naseri, H.R. (2016), "Shape optimization of concrete gravity dams considering dam-water-foundation interaction and nonlinear effects", Int. J. Optim. Civil. Eng., 6(1), 115-34.
- Khatibinia, M., Fadaee, M.J., Salajegheh, J. and Salajegheh, E. (2013), "Seismic reliability assessment of RC structures including soil-structure interaction using wavelet weighted least squares support vector machine", Reliability Eng. Syst. Safety, 110, 22-33. https://doi.org/10.1016/j.ress.2012.09.006
- Khatibinia, M., Gharehbagh, S. and Moustafa, A. (2015), "Seismic reliability-based design optimization of reinforced concrete structures including Soil-Structure interaction effects", Earthquake Engineering-From Engineering Seismology to Optimal Seismic Design of Engineering Structure, 267-304.
- Khatibinia, M., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. (2013b), "Reliability-based design optimization of RC structures including soil-structure interaction using a discrete gravitational search algorithm and a proposed metamodel", Eng. Optimiz., 45(10), 1147-1165. https://doi.org/10.1080/0305215X.2012.725051
- Kronland-Martinet, R., Morlet, J. and Grossmann, A. (1987), "Analysis of sound patterns through wavelet transforms", Int. J. Pattern Recogn. Artif. Intell., 1(02), 273-302. https://doi.org/10.1142/S0218001487000205
- Lekutai, G. (1997), "Adaptive self-tuning neuro wavelet network controllers", PhD Thesis; Electrical Engineering Department, Virginia Polytechnic Institute and State University.
- Madandoust, R. and Mousavi, Y. (2012), "Fresh and hardened properties of self-compacting concrete containing metakaolin", Constr. Build .Mater., 35, 752-760. https://doi.org/10.1016/j.conbuildmat.2012.04.109
- Mahani, A.S., Shojaee, S., Salajegheh, E. and Khatibinia, M. (2015), "Hybridizing two-stage meta-heuristic optimization model with weighted least squares support vector machine for optimal shape of double-arch dams", Appl. Soft. Comput., 27, 205-218 https://doi.org/10.1016/j.asoc.2014.11.014
- Mirzaei, Z., Akbarpour, M., Khatibinia, M. and Khashei Siuki, A. (2015), "Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach", Geomech. Eng., 9(6), 709-727. https://doi.org/10.12989/gae.2015.9.6.709
- Mohseni, E., Sadat Hosseiny, S., Ranjbar, M.M., Roshandel, E. and Yazdi, M.A. (2015), "The effects of silicon dioxide, iron(III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash", Mag. Concrete. Res., 67(20), 1112-1124. https://doi.org/10.1680/macr.15.00051
- Nazari, A. and Riahi, S. (2011a), "Effects of CuO nanoparticles on compressive strength of self-compacting concrete", Sadhana, 36(3), 371-391. https://doi.org/10.1007/s12046-011-0023-7
- Nazari, A. and Riahi, S. (2011b), "Effects of CuO nanoparticles on compressive strength of self-compacting concrete", J. Indian. Acad. Sci., 371-391.
- Niknam, T. and Farsani, E.A. (2010), "A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration", Eng. Appl. Artif. Intell., 23(8), 1340-1349. https://doi.org/10.1016/j.engappai.2010.02.005
-
Oltulu, M. and Sahin, R. (2011), "Single and combined effects of nano-
$SiO_2$ , nano-$Al_2O_3$ and nano-$Fe_2O_3$ powders on compressive strength and capillary permeability of cement mortar containing silica fume", Mater. Sci. Eng.: A, 528(22), 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054 -
Oltulu, M. and Sahin, R. (2013), "Effect of nano-
$SiO_2$ , nano-$Al_2O_3$ and nano-$Fe_2O_3$ powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: a comparative study", Ener. Build., 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014 - Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Park, D. and Rilett, L.R. (1999), "Forecasting freeway link travel times with a multilayer feedforward neural network", Comput.-Aid. Civil and Infrastr. Eng., 14(5), 357-367. https://doi.org/10.1111/0885-9507.00154
- Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
- Quan, T., Liu, X. and Liu, Q. (2010), "Weighted least squares support vector machine local region method for nonlinear time series prediction", Appl. Soft Comput., 10(2), 562-566. https://doi.org/10.1016/j.asoc.2009.08.025
- Ravi, V. (2008), "Advance in banking technology and management: impacts of ICT and CRM", Hershey, New York, NY, USA.
- Sobhani, J., Khanzadi, M. and Movahedian, A.H. (2013), "Support vector machine for prediction of the compressive strength of no-slump concrete", Comput. Concrete, 11(4), 337-350. https://doi.org/10.12989/cac.2013.11.4.337
-
Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E. and Cuellar, E.L. (2009), "Engineering of
$SiO_2$ nanoparticles for optimal performance in nano cement-based materials", Nanotechnology in construction, 3, 139-148, Springer Berlin Heidelberg. - Suykens, J.A., De Brabanter, J., Lukas, L. and Vandewalle, J. (2002), "Weighted least squares support vector machines: robustness and sparse approximation", Neurocomput., 48(1), 85-105. https://doi.org/10.1016/S0925-2312(01)00644-0
- Suykens, J.A.K., Brabanter, J.D., Lukas, L. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural. Process. Lett., 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic", Comp. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Vapnik, V. and Lerner, A. (1963), "Generalized portrait method for pattern recognition", Automat. Rem. Contr., 24(6), 774-780.
- Wu, Q. (2010), "Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system", J. Comput. Appl. Math., 233(10), 2481-2491. https://doi.org/10.1016/j.cam.2009.10.030
- Wu, Q. (2011), "Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts", Exp. Syst. Appl., 38(1), 379-385. https://doi.org/10.1016/j.eswa.2010.06.075
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cem. Concr. Res., 28(12), 1797-808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Zavar, M., Rahati, S., Akbarzadeh-T, M.R. and Ghasemifard, H. (2011), "Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection", Exp. Syst. Appl., 38(9), 10751-10758. https://doi.org/10.1016/j.eswa.2011.01.087
Cited by
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0246-7
- Investigation of SCC characterizations incorporating supplementary cementitious materials vol.8, pp.3, 2016, https://doi.org/10.1680/jemmr.18.00024