DOI QR코드

DOI QR Code

Fabrication of the accelerometer using the nano-gap trench etching

나노갭 트렌치 공정을 이용한 가속도센서 제작

  • 김현철 ;
  • 권희준 (울산대학교 공과대 학원 전기전자정보시스템공학전공)
  • Received : 2016.04.11
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

This paper proposes a novel fabrication method for a capacitive type micro-accelerometer with uniform nano-gap using photo-assisted electro-chemical etching. The sensitivity of the accelerometer should be improved while the electrodes between the inertial mass and the sensing comb should be narrowed. In this paper the nano-gap trench structure is fabricated using the photo-assisted electrochemical etching method. The sensor was designed and analysed using ANSYS simulator. The characteristics of the etching were observed according to the dc bias, the light intensity, the composition of the solution, the temperature of the solution, and the pattern pitch variation. The optimum etching conditions were dc bias of 2V, Blue LED of 20mA, 49wt% HF:DMF:D.I.Water=1:20:10, the pattern pitch of $20{\mu}m$. Uniform trench structure with width of 344nm and depth of $11.627{\mu}m$ are formed using the optimum condition.

본 논문은 광 도움 전기화학적 식각으로 나노갭 트렌치 구조를 형성하고 이를 이용해서 정전 용량형 가속도 센서를 설계하고 제작한 것에 대한 연구이다. 정전 용량형 가속도 센서의 감도를 증가시키기 위해 스프링에 연결된 관성질량과 연결된 전극과 감지전극 사이의 간격을 좁혀 커패시턴스의 변화량을 증가시키고 있다. 이를 실현시키기 위해 광-도움 전기화학적 식각을 이용하였고 ANSYS 프로그램을 이용하여 구조해석을 실시하여 $1mm{\times}mm$ 크기의 초소형 정전 용량형 가속도 센서를 설계하였다. 광-도움 전기화학적 식각의 실험 변수인 빛의 세기, dc 전압, 용액의 조성, 피치 등을 고려하여 가속도 센서는 제작 되었다. 최적 공정 조건은 dc전압 2V, Blue LED 20mA, 49wt%HF:DMF:D.I.Water=1:20:10, 피치 $20{\mu}m$이며, 폭 344nm, 깊이 $11.627{\mu}m$의 나노갭 트렌치가 형성되었다.

Keywords

References

  1. Yazdi N and Najafi K "An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process", J. Microelectromech. Syst., Vol.9 pp.544-50, 2000 https://doi.org/10.1109/84.896777
  2. Hyeon Cheol Kim, Dae Hyun Kim, Jinwoo Jeong, and Kukjin Chun, "Fabrication of nano-gap accelerometer using photo-assisted electro chemical etching", Tranducers 2005, Seoul, pp.523-526, 2005
  3. Hyeon Cheol Kim, Daehyun Kim and Kukjin Chun, "Photo-assisted electrochemical etching of a nano -gap trench with high aspect ratio for MEMS applications", J. Micromech. Microeng. 16, pp. 906-913, 2006 https://doi.org/10.1088/0960-1317/16/5/005
  4. Jeon, Yeon-Hwa, and Hyeon-Cheol Kim. "Design and Fabrication of 2mm${\time}$ 2mm sized Piezoresistive Accelerometers." Journal of the Institute of Electronics and Information Engineers 52.2 (2015): 83-88. https://doi.org/10.5573/ieie.2015.52.2.083
  5. Charlton, M. D. B., H. W. Lau, and G. J. Parker. "High aspect ratio photo-assisted electro -chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures." Microengineering Applications in Optoelectronics, IEE Colloquium on. IET, 1996
  6. Izuo S, Ohji H, French P J and Tsutsumi K J, " A novel electrochemical etching technique for n-type silicon," Sensors and Actuators A, 97, pp.720-724, 2002
  7. Bettotti, P., et al. "P-type macroporous silicon for two-dimensional photonic crystals." Journal of applied physics Vol.92, NO.12, pp.6966-6972., 2002 https://doi.org/10.1063/1.1515127
  8. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers." Journal of the electrochemical society Vol.137, No.11, pp. 3612-3626. 1990 https://doi.org/10.1149/1.2086277