DOI QR코드

DOI QR Code

Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography

CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가

  • Received : 2016.02.27
  • Accepted : 2016.03.19
  • Published : 2016.04.30

Abstract

World Health Organization reported that heart-related diseases such as coronary artery stenoses show the highest occurrence rate which may cause heart attack. Using Computed Tomography angiography images will allow radiologists to detect and have intervention by creating 3D roadmapping of the vessels. However, it is often complex and difficult do reconstruct 3D vessel which causes very large amount of time and previous researches were studied to segment vessels more accurate automatically. Therefore, in this paper, Region Competition, Geodesic Active Contour (GAC), Multi-atlas based segmentation and Active Shape Model algorithms were applied to segment aortic root from CTA images and the results were analyzed by using mean Hausdorff distance, volume to volume measure, computational time, user-interaction and coronary ostium detection rate. As a result, Extracted 3D aortic model using GAC showed the highest accuracy but also showed highest user-interaction results. Therefore, it is important to improve automatic segmentation algorithm in future

세계보건기구협회에의 통계에 따르면 심장 혈관 질환의 발병률이 가장 높은 것으로 알려져 있다. CTA영상을 사용하여 관상동맥 및 대동맥 질환을 치료 및 검사할 수 있다. 혈관을 3차원으로 복원하는 과정이 의사의 숙련도에 따라 결과가 상이하며 복원 시간이 길다는 단점이 있으며 이를 극복하고자 자동으로 정확한 혈관을 추출하는 연구들이 진행되어 왔다. 본 논문에서는 자동 및 반자동 분할 기법인 Region Competition, Geodesic Active Contour(GAC), Multi-atlas based segmentation, Active Shape Model(ASM) 알고리즘을 CTA영상에 적용하여 대동맥 기부를 추출하였으며 하우스도르프 거리, 볼륨, 영상처리속도, 사용자 관여 여부, 그리고 관상동맥 심문 검출률을 비교 및 분석하였다. 추출된 3차원 대동맥 모델 중 가장 높은 정확도를 나타낸 알고리즘은 GAC인 반면 사용자 관여가 가장 높았기 때문에 실제 시술에 적용하기 위해서는 자동 분할 알고리즘 개선이 필요하다

Keywords

References

  1. J. S. Yoon, T. S. Choi, "3D mechanical model based pulmonary nodule segmentation in CT images", 한국정보전자통신기술학회논문지, Vol. 8, No. 4, pp.319-326. 2015. https://doi.org/10.17661/JKIIECT.2015.8.4.319
  2. P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, G. Gerig, "User-guided 3D active contour segmentation of anatomical structurese: Significantly improved efficiency and reliability, NeuroImage, Vol. 31, No. 3, pp. 1116-1128, 2006. https://doi.org/10.1016/j.neuroimage.2006.01.015
  3. D. Lesage, E. D. Angelini, I. Bloch, G. Flunka-lea, "A review of 3D vessel lumen segmentation techniques: Models, features, and extraction schemes", Medical image analysis, Vol. 13, No. 6, pp. 819-845, 2009. https://doi.org/10.1016/j.media.2009.07.011
  4. K. Krissian, H. Bogunovic, J. M. Pozo, M. C. Villa-Uriol, A. F. Frangi, "Minimally Interactive Knowledge-based Coronary Tracking in CTA using a Minimal Cost Path", In 2008 MICCAI Workshop-Grand Challenge Coronary Artery Tracking. The Midas Journal, 2008
  5. I. Waechter, R. Kneser, G. Korosoglou, J. Peters, N. H. Bakker, R. V. D. Boomen, J. Weese, "Patient Specific Models for Planning and Guidance of Minimally Invasive Aortic Valve Implantation", Medical Image Computing and Computer-Assisted Intervention-MICCAI 2010, pp. 526-533, 2010.
  6. C. Kirbas, F. Quek, "A review of vessel extraction techniques and algorithms", ACM Computing Surveys (CSUR), Vol. 36, No. 2, pp. 81-121, 2004.
  7. M. Schaap, C. T. Metz, T. V. Walsum, A. G. Giessen, A. C. Weustink, N. R. Mollet, C. Bauer, H. Bogunovic, C. Castro, X. Deng, E. Dikici, T. O'Donell, M. Frenay, O. Friman, M. H. Hoyos, P. H. Kitslaar, K. Krissian, C. Kuhnel, M. A. Leungo-oroz, M. Orkisz, O. Smedby, M. Styner, A. Szymczak, H. Tek, C. Wang, S. K. Warfield, S. Zambal, Y. Zhang, G. P. Krestin. W. J. Niessen, "Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms", Medical Image Analysis, Vol 13. pp. 701-714, 2009. https://doi.org/10.1016/j.media.2009.06.003
  8. X. G, Y. S, X. Li, D. Tao, "A review of Active Appearance Models", Systems, Man, and Cybermetics, Part C: Applications and Reviews, IEEE Transactins on, Vol. 40, No. 2, pp. 145-158, 2010. https://doi.org/10.1109/TSMCC.2009.2035631
  9. Y. Zheng, M. John, R. Lao, J. Boese, U. Kirschstein, B. Georgescu, S. K. Zhou, J. Kempfert, T. Walther, G. Brockmann, D. Comaniciu, "Automatic Aorta segmentation and Valve Landmark Detection in C-arm CT:Application to Aortic Valve Implantation, Medical Imaging, IEEE Transactions on, Vol. 31, No. 12, pp. 2307-2321, 2012. https://doi.org/10.1109/TMI.2012.2216541
  10. F. Zhao, H. Zhang, A. Wahle, T. D. Scholz, M. Sonka, "Automated 4D segmentation of Aortic Magnetic Resonance Images", In BWMVC, pp. 247-256, 2006.
  11. M. A. Elattar, E. M. Wiegerinck, R. N. Planken, E. Vanbavel, H. C. Van Assen, J. B jr, H. A. Marquering, "Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation", Medical & biological engineering & computing, Vol. 52, No. 7, pp. 611-618, 2014. https://doi.org/10.1007/s11517-014-1165-7
  12. O. Friman, C. Kuhnel, H. O. Peitgen, "Coronary Centerline Extraction Using Multiple Hypothesis Tracking and Minimal Paths", In: Proc MICCAI, 2008.
  13. S. C. Zhu, A. Yuille, "Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation", IEEE Transactions on pattern analysis and machine intelligence, Vol 18, No. 9, pp. 884-900, 1996. https://doi.org/10.1109/34.537343
  14. A. Dopfer, H. H. Wang, C. C. Wang, "3D Active Appearance Model Alignment using intensity and range data", Robotics and Autonomous Systems, Vol. 62, No. 2, pp. 168-176, 2014. https://doi.org/10.1016/j.robot.2013.11.002
  15. H. A. Kirisli, M. Schapp, S. Klein, "Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study", Medical physics, Vol. 37, No. 12, 2010.

Cited by

  1. 심장 CT 혈관 조영 영상에서 대동맥 및 심문 자동 검출 vol.23, pp.1, 2016, https://doi.org/10.15701/kcgs.2017.23.1.49