References
- Benedetti M, De Caterina R, Bionda A, et al. Blood-artificial surface interactions during cardiopulmonary bypass: a comparative study of four oxygenators. Int J Artif Organs 1990;13:488-97. https://doi.org/10.1177/039139889001300808
- Gu YJ, Boonstra PW, Graaff R, Rijnsburger AA, Mungroop H, van Oeveren W. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators. Artif Organs 2000;24:43-8. https://doi.org/10.1046/j.1525-1594.2000.06351.x
- Milam JD, Austin SF, Martin RF, Keats AS, Cooley DA. Alteration of coagulation and selected clinical chemistry parameters in patients undergoing open heart surgery without transfusions. Am J Clin Pathol 1981;76:155-62. https://doi.org/10.1093/ajcp/76.2.155
- Hickey PR, Buckley MJ, Philbin DM. Pulsatile and nonpulsatile cardiopulmonary bypass: review of a counterproductive controversy. Ann Thorac Surg 1983;36:720-37. https://doi.org/10.1016/S0003-4975(10)60286-X
- Thurston GB. Viscoelasticity of human blood. Biophys J 1972;12:1205-17. https://doi.org/10.1016/S0006-3495(72)86156-3
- Thurston GB. Viscoelastic properties of blood and blood analogs. In: How TV, editor. Advances in hemodynamics and hemorheology. New York (NY): JAI Press; 1996. p. 1-30.
- Kasser U, Heimburge P, Walitza E. Viscoelasticity of whole blood and its dependence on laboratory parameters. Clin Hemorheol Micro 1989;9:307-12.
- Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003;29:435-50. https://doi.org/10.1055/s-2003-44551
- Gu YJ, Graaff R, de Hoog E, et al. Influence of hemodilution of plasma proteins on erythrocyte aggregability: an in vivo study in patients undergoing cardiopulmonary bypass. Clin Hemorheol Microcirc 2005;33:95-107.
- Morariu AM, Gu YJ, Huet RC, Siemons WA, Rakhorst G, Oeveren WV. Red blood cell aggregation during cardiopulmonary bypass: a pathogenic cofactor in endothelial cell activation? Eur J Cardiothorac Surg 2004;26:939-46. https://doi.org/10.1016/j.ejcts.2004.06.010
- Qian KX, Zeng P, Ru WM, Yuan HY, Feng ZG, Li I. How to produce a pulsatile flow with low haemolysis? J Med Eng Technol 2000;24:227-9. https://doi.org/10.1080/03091900050204278
- Hardeman MR, Goedhart PT, Dobbe JG, Lettinga KP. Laser-assisted optical rotational cell analyzer (LORCA): a new instrument for measurement of various structural hemorheological parameters. Clin Hemorheol 1994;14:605-18.
- Kameneva MV, Antaki JF, Borovetz HS, et al. Mechanisms of red blood cell trauma in assisted circulation: rheologic similarities of red blood cell transformations due to natural aging and mechanical stress. ASAIO J 1995;41:M457-60. https://doi.org/10.1097/00002480-199507000-00051
- Undar A, Henderson N, Thurston GB, et al. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Artif Organs 1999;23:717-21. https://doi.org/10.1046/j.1525-1594.1999.06408.x
- Linderkamp O. Blood rheology in the newborn infant. Baillieres Clin Haematol 1987;1:801-25. https://doi.org/10.1016/S0950-3536(87)80025-2
- Alkan T, Akcevin A, Undar A, Turkoglu H, Paker T, Aytac A. Effects of pulsatile and nonpulsatile perfusion on vital organ recovery in pediatric heart surgery: a pilot clinical study. ASAIO J 2006;52:530-5.
- Brecher G, Bessis M. Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: a critical review. Blood 1972;40:333-44.
- Reinhart WH, Chien S. Echinocyte-stomatocyte transformation and shape control of human red blood cells: morphological aspects. Am J Hematol 1987;24:1-14. https://doi.org/10.1002/ajh.2830240102
- Agroyannis B, Dalamangas A, Tzanatos H, et al. Alterations in echinocyte transformation and erythrocyte sedimentation rate during hemodialysis. Artif Organs 1997;21:327-30.
- Saltman P. Oxidative stress: a radical view. Semin Hematol 1989;26:249-56.
- Snyder LM, Fortier NL, Trainor J, et al. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest 1985;76:1971-7. https://doi.org/10.1172/JCI112196
- Hashimoto H, Mio T, Sumino K. Lipid abnormalities of erythrocyte membranes in hemodialysis patients with chronic renal failure. Clin Chim Acta 1996;252:137-45. https://doi.org/10.1016/0009-8981(96)06317-6
- Luciak M, Trznadel K. Free oxygen species metabolism during haemodialysis with different membranes. Nephrol Dial Transplant 1991;6 Suppl 3:66-70. https://doi.org/10.1093/ndt/6.1.66
Cited by
- Continuous and simultaneous measurement of the biophysical properties of blood in a microfluidic environment vol.141, pp.24, 2016, https://doi.org/10.1039/c6an01593j
- Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations vol.17, pp.9, 2016, https://doi.org/10.3390/s17092037
- Microfluidic-based measurement of RBC aggregation and the ESR using a driving syringe system vol.10, pp.16, 2016, https://doi.org/10.1039/c7ay02719b
- In vitroandex vivomeasurement of the biophysical properties of blood using microfluidic platforms and animal models vol.143, pp.12, 2018, https://doi.org/10.1039/c8an00231b
- Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform underin-vitroclosed-loop circulation vol.12, pp.2, 2016, https://doi.org/10.1063/1.5017052
- Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion vol.9, pp.9, 2016, https://doi.org/10.3390/mi9090467
- SELECTION OF THE MODE OF CARDIOPULMONAY BYPASS IN AGED AND GERIATRIC PATIENTS WITH CORONARY ARTERY BYPASS GRAFTING vol.2019, pp.1, 2016, https://doi.org/10.29254/2077-4214-2019-1-2-149-142-146
- Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows vol.10, pp.9, 2016, https://doi.org/10.3390/mi10090577
- Microfluidic-based effective monitoring of bloods by measuring RBC aggregation and blood viscosity under stepwise varying shear rates vol.32, pp.1, 2020, https://doi.org/10.1007/s13367-020-0003-8
- Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings vol.41, pp.2, 2020, https://doi.org/10.1088/1361-6579/ab71f3
- Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample vol.20, pp.8, 2016, https://doi.org/10.3390/s20082284
- Use of a Virtual Mock Loop model to evaluate a new left ventricular assist device for transapical insertion vol.43, pp.10, 2020, https://doi.org/10.1177/0391398820907104
- Quantitative Monitoring of Dynamic Blood Flows Using Coflowing Laminar Streams in a Sensorless Approach vol.11, pp.16, 2016, https://doi.org/10.3390/app11167260