참고문헌
- Agazie YM, Movilla N, Ischenko I, et al (2003). The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene, 22, 6909-18 https://doi.org/10.1038/sj.onc.1206798
- Al Hussain TO, Akhtar M (2013) Molecular basis of urinary bladder cancer. Adv Anat Pathol, 20, 53-60. https://doi.org/10.1097/PAP.0b013e31827bd0ec
- Arshad AP, Mushtaq AS (2012). Burden of cancers in the valley of Kashmir: 5 year epidemiological study reveals adifferent scenario. Tumor Biol, 33, 1629-37. https://doi.org/10.1007/s13277-012-0418-z
- Arshad AP, Zafar S, Nighat P, et al (2010). FGFR3 Germline Mutations Identified in Skeletal Dysplasia Significantly Cause Low-Grade and Low-Stage Bladder Cancer by Somatic Mutations. Uro Today Int J, 3.
- Ayan S, Gokce G, Kilicarslan H, et al (2001). K-RAS mutation in transitional cell carcinoma of urinary bladder. Int Urol Nephrol, 33, 363-367. https://doi.org/10.1023/A:1015213713048
- Bakkar AA, Wallerand H, Radvanyi F, et al (2003). FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res, 63, 8108-12.
- Beaglehole RA, Irwin, Prentice T (2004). Changing history. The World Health Report, 122.
- Bellus GA, Spector EB, Speiser PW, et al (2000). Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet, 67, 1411-21. https://doi.org/10.1086/316892
- Billerey C, Chopin D, Aubriot-Lorton MH et al (2001). Frequent FGFR3 Mutations in Papillary Non-Invasive Bladder (PTa). Tumors Am J Pathol, 158, 1955-9. https://doi.org/10.1016/S0002-9440(10)64665-2
- Billerey C, Chopin D, Aubriot-Lorton MH, et al (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol, 158, 1955-9. https://doi.org/10.1016/S0002-9440(10)64665-2
- Billerey C, Chopin D,. Aubriot-Lorton MH, et al (2001). Frequent FGFR3 Mutations in Papillary Non-Invasive Bladder (PTa) Tumors. Am J Pathol, 58, 1955-9.
- Cappellen D, De Oliveira C, Ricol D, et al (1999). Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet, 23, 18-20.
- Chesi M, Brents LA, Ely SA et al (2001). Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 97, 729-736. https://doi.org/10.1182/blood.V97.3.729
- Chesi M, Nardini E, Brents LA, et al (1997). Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet, 16, 260-4. https://doi.org/10.1038/ng0797-260
- Dinney CP, McConkey DJ, Millikan RE, et al (2007). Focus on bladder cancer. Cancer Cell, 6, 111-6.
- Hart K, Robertson S, Kanemitsu MY, et al (2000). Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene, 19, 3309-20. https://doi.org/10.1038/sj.onc.1203650
- Hart KC, Robertson S, Donoghue DJ (2001). Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell, 12, 931-42. https://doi.org/10.1091/mbc.12.4.931
- Hartmann A, Schlake G, Zaak D, et al (2002). Occurrence of Chromosome 9 and P53 Alterations in Multifocal Dysplasia and Carcinoma in Situ of Human Urinary Bladder. Cancer Res, 62, 809-18.
- Hernandez S, de Muga S, Agell L, et al (2009). FGFR3 mutations in prostate cancer: association with low-grade tumors. Mod Pathol, 22, 848-56. https://doi.org/10.1038/modpathol.2009.46
- Jebar AH, Hurst CD, Tomlinson DC, et al (2005). FGFR3 and RAS Gene Mutations Are Mutually Exclusive Genetic Events in Urothelial Cell Carcinoma. Oncogene, 24, 5218-25. https://doi.org/10.1038/sj.onc.1208705
- Juanpere N, Agell L, Lorenzo M et al.(2012). Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer. Hum Pathol. 43, 1573-82. https://doi.org/10.1016/j.humpath.2011.10.026
- Kanai M, Goke M, Tsunekawa S, et al (1997). Signal transduction pathway of human fibroblast growth factor receptor 3 and Identification of a novel 66-kDa phosphoprotein. J Biol Chem, 272, 6621-8. https://doi.org/10.1074/jbc.272.10.6621
- Kimura T, Suzuki H, Ohashi T, et al (2001). The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas. Cancer, 92, 2555-61. https://doi.org/10.1002/1097-0142(20011115)92:10<2555::AID-CNCR1607>3.0.CO;2-M
- Knowles MA (1999). The genetics of transitional cell carcinoma: progress and potential clinical application. Brit J Urol Int, 84, 412-27.
- Lindgren D, Liedberg F, Andersson A. et al (2006). Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene, 25, 2685-96. https://doi.org/10.1038/sj.onc.1209249
- Malkowicz SB, Van Poppel H, Mickisch G, et al (2007). Muscleinvasive urothelial carcinoma of the bladder. Urol, 69, 3-16. https://doi.org/10.1016/S0090-4295(07)00617-6
- Nagata M, Muto S, Horie S (2016). Molecular biomarkers in bladder cancer: novel potential indicators of prognosis and treatment outcomes. Dis Markers. 2016, 8205836
- Olderoy G, Daehlin L, Ogreid D (1998). High frequency of Ha-RAS and Ki-RAS in transitional cell carcinoma of the bladder. Anticancer Res, 18, 2675-8.
- Ornitz DM, Marie PJ (2002). FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 16, 1446-65. https://doi.org/10.1101/gad.990702
- Pelucchi C, Bosetti C, Negri E, et al (2006). Mechanisms of disease: the epidemiology of bladder cancer. Natl Clin Prac Urol, 3, 327-340. https://doi.org/10.1038/ncpuro0510
- Powers CJ, McLeskey SW, Wellstein A (2007). Fibroblast growth factors, their receptors and signaling, Endocr Relat Cancer, 3, 165-97.
- Przybojewska B, Jagiello A, Jalmuzna P (2000). H-RAS, K-RAS and N-RAS gene activation in human bladder cancers. Cancer Genet Cytogenet, 121, 73-77. https://doi.org/10.1016/S0165-4608(00)00223-5
- Sibley K, D. Cuthbert-Heavens, Knowles MA (2001). Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene, 20 (6), 686-691. https://doi.org/10.1038/sj.onc.1204110
- Smal MP, Rolevich AI, Polyakov SL, et al. (2014). FGFR3 and TP53 mutations in a prospective cohort of Belarusian bladder cancer patients. Exp Oncol, 36, 246-51.
- Spruck CH, Ohneseit PF, Gonzalez-Zulueta M, et al (1994). Two molecular pathways to TCC of the bladder. Cancer Res, 54, 784-8.
- Theodorescu D, Cornil I, Sheehan C, et al (1991). Ha-RAS induction of the invasive phenotype results in up-regulation of epidermal growth factor receptors and altered responsiveness to epidermal growth factor in human papillary transitional cell carcinoma cells. Cancer Res, 51, 4486-91.
- Uchida T, Wada C, Ishida H, et al (1995). p53 mutations and prognosis in bladder tumors. Urol Int, 55, 63-7. https://doi.org/10.1159/000282753
- Vajo Z, Francomano CA, Wilkin DJ (2000). The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev, 21, 23-39.
- van Rhijn BW, Lurkin I, Radvanyi F, et al (2001). The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res, 61, 1265-8.
- van Rhijn BW, van der Kwast TH, Vis A, et al (2004). FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res, 64, 1911-4. https://doi.org/10.1158/0008-5472.CAN-03-2421
- Zhang ZT, Pak J, Huang HY, et al (1991). Role of Ha-RAS activation in superficial papillary pathway of urothelial tumor formation. Oncogene, 20, 1973-80.