DOI QR코드

DOI QR Code

Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method

액상환원법으로 제조한 은 나노입자의 크기와 분산특성

  • Lee, Jong Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2016.01.27
  • Accepted : 2016.05.12
  • Published : 2016.05.31

Abstract

This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.

본 연구에서는 PAA를 사용한 액상환원법에 의해 은 나노용액을 합성하는 과정에서 실험변수로서 PAA의 분자량, PAA의 첨가량, 환원제, 분산제, 유기용매 등을 사용하여 은 나노입자의 크기와 분산특성을 조사하였다. UV-Visable spectrophotometer로 은 나노입자의 생성을 확인하였으며, SEM으로 nanometer 영역의 입자크기와 분산특성을 알아냈다. 초음파 파쇄시간이 증가할수록 은 나노입자의 덩어리가 작아지는 경향을 나타내며 3시간 이후에는 1-5개의 작은 덩어리 형태로 은 나노입자가 분산되었다. 초음파 파쇄와 함께 Copolymer with pigment affinic group을 주성분으로 하는 분산제인 BYK-192를 첨가해 주면 49.56-85.75 nm의 크기를 가진 비교적 구형에 가까운 균일한 은 나노입자가 균일하게 완전히 분산되는 되었다. PAA의 분자량이 증가할수록 은 나노입자의 평균크기가 36.82<50.66<56.06 nm 순으로 증가하였다. 또한 PAA의 첨가량이 늘어날수록 은 나노입자의 표면에 덧씌움 현상이 일어나서 은 나노입자의 크기가 커지는 것으로 나타났다. 환원제인 Hydrazine을 첨가하면 환원반응에 의해 많은 수의 핵이 생성되었기 때문에 상대적으로 작은 크기의 입자가 생성되었다. 유기용제(에타놀-아세톤)는 은 나노입자의 규칙적 배열을 도와주었다.

Keywords

References

  1. Y. Xia, Y. Sun, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 13, 79-2176, 2002.
  2. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone), Langmuir, 12, 12-909, 1996. DOI: http://dx.doi.org/10.1021/la950435d
  3. C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5, 244, 2005. DOI: http://dx.doi.org/10.1166/jnn.2005.034
  4. B.U. Lee, Y.J. Kim, C.H. Lee, S.H. Yun, G.N. Bae, J.H. Ji, Development of a fungal spore aerosol generator: Test with Cladosporium cladosporioides and Penicillium citrinum, J. Microbiol. Biotechnol., 18(4), 795-798, 2008.
  5. C. N. Lok, C. M. Ho, R. Chen,W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, C.M.Chen, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome. Res., 5, 916-924, 2006. DOI: http://dx.doi.org/10.1021/pr0504079
  6. A. Z. Melaiye, K. Sun, A. Hindi, Milsted, D. Ely, D. H. Reneker, C. A. Tessierand, W. J. Youngs, Silver (I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity, J. Am. Chem. Soc., 127, 2285, 2005. DOI: http://dx.doi.org/10.1021/ja040226s
  7. S. Franke, G. Grass, D. H. Nies, The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions, J. Microbiol., 51, 956, 2001. DOI: http://dx.doi.org/10.1099/00221287-147-4-965
  8. S. I. Shin, S. G. Oh., Preparation of nano particles using surfactants, Prosp. Ind. Chem. 4(2), 40-47, 2001.
  9. Y. H. Kim, The Effect of zeta-potential on the stabilization of silver nanoparticle colloid prepared by alcohol reduction method with PVP, J. Korean Ind. Eng. Chem., 14(4), 487-492, 2003.
  10. A. Dietrich, A. Neubrand, Effects of particle size and molecular weight of polyethylenimine on properties of nanoparticulate silicon dispersions, J. Am. Ceram. Soc., 84, 12-806, 2001. DOI: http://dx.doi.org/10.1111/j.1151-2916.2001.tb00745.x
  11. X. Li, J. J. Lenhart, H. W. Walker, Aggregation Kinetics and Dissolution of Coated Silver Nanoparticle, Langmuir, 28, 1095-1104, 2011. DOI: http://dx.doi.org/10.1021/la202328n
  12. K. S. Chou and C. Y. Ren, Synthesis of nanosized silver particles by chemical reduction method, Mater. Chem. Phys., 64, 46-241, 2000. DOI: http://dx.doi.org/10.1016/S0254-0584(00)00223-6
  13. A. Pyatenko, M. Yamaguchi, M. Suzuki, Synthesis of Spherical Silver Nanoparticles with Controllable Sizes in Aqueous Solutions, J. Phys. Chem. C, 111, 7910-7917, 2007. DOI: http://dx.doi.org/10.1021/jp071080x
  14. X. Li, J. J. Lenhart, H. W. Walker, Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles, Langmuir, 26(22), 16690-16698, 2010 DOI: http://dx.doi.org/10.1021/la101768n