DOI QR코드

DOI QR Code

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light

  • Wang, Wei (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • He, Mingyi (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Zhang, Huan (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Dai, Yatang (School of Materials Science and Engineering, Southwest University of Science and Technology)
  • Received : 2015.12.28
  • Accepted : 2016.03.21
  • Published : 2016.06.30

Abstract

In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.

Keywords

References

  1. N. Liu, V. Haublein, X. M. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, Nano Lett. 15, 6815 (2015). https://doi.org/10.1021/acs.nanolett.5b02663
  2. K. W. Shen, F. Ran, X. X. Zhang, C. Liu, N. J. Wang, X. Q. Niu, Y. Liu, D. J. Zhang, L. B. Kong, L. Kang, and S. W. Chen, Synth. Met. 209, 369 (2015). https://doi.org/10.1016/j.synthmet.2015.08.012
  3. M. Abdallah and M. E. Moustafa, Annal. Chim. 94, 601 (2004). https://doi.org/10.1002/adic.200490073
  4. T. D. Nguyen-Phan, S. Luo, Z. Y. Liu, A. D. Gamalski, J. Tao, W. Q. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita, and J. A. Rodriguez, Chem. Mater. 27, 6282 (2015). https://doi.org/10.1021/acs.chemmater.5b02131
  5. D. I. Won, J. S. Lee, J. M. Ji, W. J. Jung, H. J. Son, C. Pac, and S. O. Kang, J. Am. Chem. Soc. 137, 13679 (2015). https://doi.org/10.1021/jacs.5b08890
  6. W. K. Zhang and K. J. Gaffney, Acc. Chem. Res. 48, 1140 (2015). https://doi.org/10.1021/ar500407p
  7. Z. Zhu, Z. Y. Lu, D. D. Wang, X. Tang, Y. S. Yan, W. D. Shi, Y. S. Wang, N. L. Gao, X. Yao, and H. J. Dong, Appl. Catal. B-Environ. 182, 115 (2016). https://doi.org/10.1016/j.apcatb.2015.09.029
  8. F. Deng, X. Lu, F. Zhong, X. Pei, X. Luo, S. Luo, D. D. Dionysiou, and C. Au, Nanotechnology. 27, 065701 (2015).
  9. X. Mao, C. Fan, Y. Wang, Y. Wang, and X. Zhang, Appl. Surf. Sci. 317, 517 (2014). https://doi.org/10.1016/j.apsusc.2014.08.164
  10. P. Zhang, Z. L. Mo, L. J. Han, Y. W. Wang, G. P. Zhao, C. Zhang, and Z. Li, J. Mol. Catal. a-Chem. 402, 17 (2015). https://doi.org/10.1016/j.molcata.2015.03.005
  11. Z. Zhu, Z. Y. Lu, X. X. Zhao, Y. S. Yan, W. D. Shi, D. D. Wang, L. L. Yang, X. Lin, Z. F. Hua, and Y. Liu, Rsc Adv. 5, 40726 (2015). https://doi.org/10.1039/C5RA06209H
  12. S. L. Ma, S. H. Zhan, Y. N. Jia, and Q. X. Zhou, ACS Appl. Mater. Interfaces. 7, 21875 (2015). https://doi.org/10.1021/acsami.5b06264
  13. P. H. Shao, J. Y. Tian, B. R. Liu, W. X. Shi, S. S. Gao, Y. L. Song, M. Ling, and F. Y. Cui, Nanoscale. 7, 14254 (2015). https://doi.org/10.1039/C5NR03042K
  14. L. Zhang, W. Z. Wang, L. Zhou, M. Shang, and S. M. Sun, Appl. Catal. B-Environ. 90, 458 (2009). https://doi.org/10.1016/j.apcatb.2009.04.005
  15. C. W. Tan, G. Q. Zhu, M. Hojamberdiev, C. Xu, J. Liang, P. F. Luo, and Y. Liu, J. Clust. Sci. 24, 1115 (2013). https://doi.org/10.1007/s10876-013-0602-3
  16. J. Y. Bai, R. F. Zhao, and G. W. Diao, Curr. Nanosci. 11, 186 (2015). https://doi.org/10.2174/1573413710666141017232354
  17. X. Taiping, X. Longjun, L. Chenglun, Y. Jun, and W. Mei, Dalton Trans. 43, 2211 (2014). https://doi.org/10.1039/C3DT52219A