DOI QR코드

DOI QR Code

Efficient Re-degaussing Technique for a Naval Ship Undergoing a Breakdown in Degaussing Coils

  • Kim, Dong-Wook (The 6th R&D Institute, Agency for Defense Development) ;
  • Lee, Sang-Kyun (Department of Electrical Engineering, Kyungpook National University) ;
  • Kang, Byungsu (Department of Electrical Engineering, Kyungpook National University) ;
  • Cho, Jeonghun (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, WooSeok (Department of Electric Automatization, Busan Institute of Science and Technology) ;
  • Yang, Chang-Seob (The 6th R&D Institute, Agency for Defense Development) ;
  • Chung, Hyun-Ju (The 6th R&D Institute, Agency for Defense Development) ;
  • Kim, Dong-Hun (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2016.02.05
  • Accepted : 2016.05.09
  • Published : 2016.06.30

Abstract

A naval ship equipped with a degaussing system may undergo a breakdown in degaussing coils at sea. In the case, underwater magnetic field around the ship abruptly grows up and it can make the ship be easily exposed to fatal hazards such as magnetic mines or torpedoes. This paper proposes an efficient and practical re-degaussing technique for a ship where a part of degaussing coils is out of order. To achieve this, an analytical design sensitivity formula and approximated degaussing coil field are exploited, and then new optimum currents of available coils are reassessed. To validate the proposed method, a muck-up ship equipped with 14 degaussing coils is tested in scale-down magnetic treatment facilities under three faulty coil conditions.

Keywords

References

  1. R. Donati and J. P. Le Cadre, IEE Proc. Radar Sonar Navig. 149, 221 (2002). https://doi.org/10.1049/ip-rsn:20020491
  2. O. Chadebec, J. Coulomb, J. Bongiraud, G. Cauffet, and P. Thiec, IEEE Trans. Magn. 38, 1005 (2002). https://doi.org/10.1109/20.996258
  3. O. Chadebec, J. Coulomb, G. Cauffet, and J. Bongiraud, IEEE Trans. Magn. 39, 1634 (2003). https://doi.org/10.1109/TMAG.2003.810429
  4. H. Liu and Z. Ma, Proc. Int. Conf. Mechatronics and Automation 3133 (2007).
  5. C. Yang, K. Lee, G. Jung. H. Chung, J. Park, and D. Kim, J. Appl. Physics 103, 905 (2008).
  6. J. Lee, H. Choi, W. Nah, I. Park, J. Kang, J. Joo, J. Byun, Y. Kwon, M. Sohn and S. Kim, IEEE Trans. Appl. Supercond. 14, 1906 (2004). https://doi.org/10.1109/TASC.2004.830926
  7. M. Minakami, IEEE Trans. Appl. Supercond. 14, 940 (2004). https://doi.org/10.1109/TASC.2004.830326
  8. N. Choi, G. Jeung, C. Yang, H. Chung, and D. Kim, IEEE Trans. Appl. Supercond. 42, 4904504 (2012).
  9. N. Choi, G. Jeung, S. Jung, C. Yang, H. Chung, and D. Kim, IEEE Trans. Magn. 48, 419 (2012). https://doi.org/10.1109/TMAG.2011.2177515
  10. K. Lee, H. Choi, W. Nah, I. Park, J. Kang, J. Joo, J. Byun, Y. Kwon, M. Sohn, and S. Kim, IEEE Trans. Magn. 45, 1478 (2009). https://doi.org/10.1109/TMAG.2009.2012684
  11. D. Kim, J. Sykulski, and D. Lowther, IEEE Trans. Magn. 41, 1752 (2005). https://doi.org/10.1109/TMAG.2005.846036
  12. DOT User Manual, Vanderplaats Research & Development Inc., Colorado Springs, USA (2001).