DOI QR코드

DOI QR Code

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2

제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성

  • Received : 2016.05.25
  • Accepted : 2016.06.14
  • Published : 2016.06.30

Abstract

Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

단층 $MoS_2$는 1H 상을 가질 때 에너지적으로 가장 안정하다고 알려져 있지만, 전자선 등을 이용하여 에너지를 가하면 1T 상으로 상전이를 일으킬 수 있다. 1T 상도 1H 상과 마찬가지로 상자성 상태가 에너지적으로 안정하지만 1H $MoS_2$에 국소적인 1T 상이 존재하는 구조는 자성을 가질 수 있음을 알았다. 본 연구에서 도입한 ($2{\times}2$) 초격자에 2H와 1T가 3 : 1의 비율로 존재하는 국소 1T 구조 일 때 계산된 자기모멘트는 약 $0.049{\mu}_B/MoS_2$이었으며, 초격자 내의 1T 환경의 Mo 원자가 대부분의 자기모멘트를 기여하는 것으로 나타났다. 따라서 단층 $MoS_2$ 내에 자연스러운 자성/비자성 경계가 생성되므로 단층 $MoS_2$가 스핀트로닉스 소자로 응용 가능할 것으로 기대한다.

Keywords

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  2. W. S. Yun and J. D Lee, J. Phys. Chem. C 119, 2822 (2015). https://doi.org/10.1021/jp510308a
  3. K. Lee, W. S. Yun, and J. D. Lee, Phys. Rev. B 91, 125420 (2015). https://doi.org/10.1103/PhysRevB.91.125420
  4. S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009). https://doi.org/10.1103/PhysRevB.79.115409
  5. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012). https://doi.org/10.1103/PhysRevB.85.033305
  6. H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano 8, 6563 (2014). https://doi.org/10.1021/nn501779y
  7. S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84, 045409 (2010).
  8. S. W. Han, Y. H. Hwang, S.-H. Kim, W. S. Yun, J. D. Lee, M. G. Park, S. Ryu, J. S. Park, D.-H. Yoo, S.-P. Yoon, S. C. Hong, K. S. Kim, and Y. S. Park, Phys. Rev. Lett. 110, 247201 (2013). https://doi.org/10.1103/PhysRevLett.110.247201
  9. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008). https://doi.org/10.1021/ja805545x
  10. H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012). https://doi.org/10.1039/c2jm15906f
  11. S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, and A. F. Hebard, Appl. Phys. Lett. 101, 123105 (2012). https://doi.org/10.1063/1.4753797
  12. H. Pan and Y. W. Zhang, J. Phys. Chem. C 116, 11752 (2012). https://doi.org/10.1021/jp3015782
  13. S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002). https://doi.org/10.1021/jp0134603
  14. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013). https://doi.org/10.1186/1556-276X-8-1
  15. N. M. Galea, E. S. Kadantsev, and T. Ziegler, J. Phys. Chem. C 113, 193 (2008).
  16. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014). https://doi.org/10.1038/nnano.2014.64
  17. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  18. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).
  19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  21. P. E. Blochl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  23. P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002). https://doi.org/10.1063/1.1495401
  24. Q. Tang and D. E. Jiang, Chem. Mater. 27, 3743 (2015). https://doi.org/10.1021/acs.chemmater.5b00986
  25. S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T. L. Thong, Appl. Phys. Lett. 101, 102103 (2012). https://doi.org/10.1063/1.4750237