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ABSTRACT 

We introduce a queueing system with general arrival stream and exponential service time under the N-policy, where 
customers may renege during idle period and arrival rates may vary according to the server’s status. Probability distri-
butions of the lengths of idle period and busy period are derived using absorbing Markov chain approach and a 
method to obtain the optimal control policy that minimizes long-run expected operating cost per unit time is provided. 
Numerical analysis is done to illustrate and characterize the method. 
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1.  INTRODUCTION 

We consider a queueing system with a control policy 
under steady-state conditions. Especially, whenever the 
system is empty, the server becomes idle and resumes 
service again when there are N customers waiting in the 
system. This is called N-policy, where N is the threshold 
from which the server begins its service. Services are 
provided exhaustively, that is, continue until there re-
mains no customer in the system.  

Numerous papers have dealt with queueing models 
adopting N-policy since Yadin and Naor (1963). For stu-
dies on N-policy and related work, readers are advised 
to see Takagi (1991). While most of the queueing mod-
els with control policies studied adopt Poisson input, 
research on the general input queueing models with con-
trol policy is relatively scarce. Ke (2003) and Zhang and 
Tian (2004) introduce N-policy in the G/M/1 queueing 
systems to obtain the steady-state probability distribu-
tions of the number of customers in the system. Lee and 
Ahn (2002) and Lee and Park (2004) studied MAP/G/1 
and BMAP/G/1 queues under N-policy, but optimal poli-
cies are not discussed due to the complexity of the per-
formance measures. Chae and Lee (2005) consider GI/ 
M/1 queues with generalized vacations including N-

policy to obtain stationary probabilities of the embedded 
Markov chains by an absorbing Markov chain approach.  

There is growing interest in the analysis of queue-
ing systems with impatient customers due to their poten-
tial application in communication systems, call centers, 
production-inventory systems and many other related 
areas (see Akcan (2013), e.g., for the application to the 
inventory control system). As for the instance of queue-
ing systems with impatient customers, see Benjaafar et 
al. (2010). Blackburn (1972) considers an M/G/1 queue-
ing system with customer balking and/or reneging and 
gives a finite algorithm to compute the stationary opti-
mal policy that maximizes the expected discounted re-
ward under some conditions on the system parameters 
and unit costs. Altman and Yechiali (2006) presents a 
comprehensive analysis of the M/M/c and M/G/1 queues, 
where customers’ impatience is due to the absence of 
servers upon arrival for both the multiple and the single-
vacation cases, and obtain various closed-form results. 
More recently, Yue et al. (2011) consider a two-phase 
queueing system with impatient customers and multiple 
vacations with Poisson arrivals. They derive the closed-
form expressions for various performance measures 
including the mean system sizes for various states of the 
server, the average rate of balking, the average rate of 
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reneging, and the average rate of loss. 
Swensen (1986) utilizes the remaining workload to 

derive the asymptotic distributions of the actual waiting 
time and the virtual waiting time of G/M/c queue with 
impatient customers when the interarrival times follow 
the Coxian distribution. Choi et al. (2004) computes many 
performance measures in MAP/M/c queue with impa-
tience. Bae and Kim (2010) derive the stationary distri-
bution of the workload of the server of G/M/1 queue 
with constant patience time by the level crossing argu-
ment. Mandelbaum and Momčilović (2012) consider G/ 
GI/N+GI queueing systems with impatience in the qual-
ity-and efficiency-domain (QED) regime. Diffusion ap-
proximation is used here to derive queue length and 
virtual waiting time processes. 

Tadj and Choudhury (2005) perform extensive sur-
veys on the optimal design and control of queueing sys-
tems with control policies. They describe the different 
kinds of threshold (policy) models available in the lit-
erature, especially of N-, T-, and D-policies along with 
various combined policies, but no queueing model with 
impatient customers under N-policy has been found in 
their review. Other assumptions, such as server setup, 
nonlinear cost structure, finite system capacity, server 
vacation, priority among customers, and so forth, are 
introduced in many literatures combined with N-policy 
and analyzed. To the best of our knowledge, however, 
there is no literature considering customers’ impatience 
for general input and exponential server queueing sys-
tem with N-policy. Recently, Chae and Kim (2007) and 
Kim and Yang (2011) derive the probability distribution 
of busy period of G/M/1 queues under server vacations 
and, especially, Chae and Lim (2008) introduces N-policy. 
Their results, however, are not computationally tractable 
even for the moderate value of N, because one should 
derive the Nth derivative of a very complex formula to 
obtain the probability distribution of busy period. 

In this paper, we introduce a queueing system with 
general arrival stream and exponential service time un-
der the N-policy, where customers may renege during 
idle period and arrival rates may vary according to the 
server’s status. In contrast to the previous study, our 
method utilizes a sample-path approach and is computa-
tionally applicable for a large value of N. Our results are 
useful for, e.g., the production-inventory system that 
handles perishable goods and the external orders arrive 
at the system in batches whose sizes are random. Be-
cause today’s production facility is mostly involved in 
multiple tasks, it produces specific products with its full 
capacity and stores them in the inventory until the 
amount of inventory reach a predetermined level. In this 
case, the proper level of inventory from which the facil-
ity can share its production capability with other goods 
should be determined to minimize the overall cost. Our 
approach can be applied to this kind of make-to-order 
type production-inventory system. 

Probability distributions of the lengths of idle and 
busy periods are derived by means of absorbing Markov 

chain approach and a method to obtain the optimal con-
trol policy that minimizes long-run expected operating 
cost per unit time is provided. Numerical examples are 
given to illustrate the method. 

The paper is organized as follows: Section 2 intro-
duces the model considered in the paper and notations 
are explained. Sections 3 and 4 derive the probability 
distributions and expected values of the idle and busy 
periods, respectively, on which the computation of the 
operating cost function in Section 5 is based. Section 6 
provides numerical examples and Section 7 concludes 
the paper.  

2.  MODEL AND NOTATIONS 

The following notations are used throughout the 
paper. 

 
N:  threshold level, 2,N ≥  
I, B: random variables of lengths of idle and 

busy periods, respectively, 
, ( )I IA A ⋅ : random variable, distribution function of in-

terarrival time during idle period, respectively 
, ( )B BA A ⋅ : random variable, distribution function of in-

terarrival time during busy period, respectively 
,I Bλ λ : arrival rates in idle and busy periods, respec-

tively, where 1/ ( ), 1/ ( ),I I B BE A E Aλ λ= =  
* *( ), ( ) :I BA Aθ θ  Laplace transforms of ( )IA ⋅  and ( ),⋅BA  

respectively, 
η : rate of reneging, 
S: random variable of service time to a batch 

of customers, 
μ : service rate, where 1/ ( )E Sμ =  
G : random variable of the number of custom-

ers in each batch,  
ig : probability that the batch size is ,  1,i i =  

2,L  
nτ
− : epoch of right before the 

thn  arrival, 1,n =  
2,L , 

( ),IN t ( )BN t : numbers of customers in the system at time 
t during the idle and busy periods, respec-
tively, 

sC : setup cost incurred when the server initi-
ates service, 

hC : holding cost per customer per unit time in 
the system. 

 
We consider a G/MX/1 queueing system with a re-

movable server under steady-state condition. When the 
system becomes empty, the server remains idle until N 
customers are waiting in the system (N-policy). Once 
the number of customers waiting in the system reaches 
to N, the server starts providing service exhaustively and 
server’s idle period and server’s busy period repeat over 
and over again. Customers, however, who have arrived 
during server idle period and are waiting for the server 
to start service, are impatient and renege. As a result, 
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they may leave the system without being served before 
the service commences. Therefore, the actual number of 
customers arrived during idle period may be greater than 
N. Once the server’s busy period begins, however, no 
reneging is occurred. We assume 2N ≥  for simplicity but 
a slight modification can accommodate the case 1,N =  
as discussed in Section 4. 

Customers’ arrival tendency may become different 
according to the server status. For example, customers 
are reluctant to join the queue if the server is currently 
idle, while they tend to come faster to the system once 
the server starts service. Therefore, we assume the arri-
val rates are dependent on the server’s state in this paper.  

During the idle period, the inter-arrival time of cus-
tomers, ,IA  is generally distributed with distribution func-
tion ( ).IA ⋅  Since the customers arrived during this pe-
riod may be impatient and reneging, we assume the time 
between two consecutive reneging is exponentially dis-
tributed with mean 1 /η  and only one reneging occurs at 
a time. Subscript I is replaced with B in case of busy 
period, that is, ,BA  ( ),BA ⋅  and 1/ ( ).B BE Aλ =  Services are 
provided in batches whose size is random and service 
times given to each batch are exponentially distributed. 
Numbers of customers included in each batch are inde-
pendent of each other with common probability distribu-
tion, Pr( ),  1, 2, .ig G i i≡ = = L  Especially, we assume 
that at the moment of the end of busy period the whole 
system restarts, i.e., it forgets the elapsed time since the 
previous arrival and the next customer in idle period will 
arrive after the random time having distribution ( ).IA ⋅  
In the following two subsections, we derive the prob-
ability distributions of the lengths I of idle period and B 
of busy period when the threshold is N. 

3.  DERIVATION OF THE LENGTH OF IDLE 
PERIOD 

The random process { ( ), 1, 2, }I nN nτ − = L  with state 
space {0, 1, 2, , }NL  is a discrete-time absorbing Markov 
chain because 

 
1 ,( ) ( ) 1 ,I n I n I nN N Dτ τ− −
+ = + −   (1) 

 
w here ,I nD  is total number of reneging customers dur-
ing , 1 ,I n n nA τ τ− −

+≡ −  the time between 
thn  and ( 1)thn+  arri-

vals, and , ( ) 1, ( ) 0.I n I n I nD N Nτ τ− −≤ + ≥  We use hereafter the 
generic random variables ID  and IA  instead of ,I nD  and 

, ,I nA 1, 2, .n = L  The probability generating function (pgf) 
( )ID z  of ID  is given by 

 
*

0
0

( )( ) ( ) ( ),
!

m x
m

I I I
m

x eD z z dA x A z
m

ηη η η
−∞ ∞

=

= = −∑ ∫    (2) 

 
where 

*( )IA θ  is the Laplace transform (LT) of ( ).IA ⋅  
Then the probability distribution kd  of ID  is given by:  

0
1[ ] ( ) |
!

k

k I I zk

dd P D k D z
k dz =≡ = =   (3) 

 
Now, we can build one-step transition probability 

matrix IP  of the absorbing discrete-time Markov chain 
{ ( ), 1, 2, },I nN nτ − = L  where 0, 1, 2, , 1N −L  are transient 
states and N is the absorbing state, as following:  

 

0

,
1

I I
I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B B
P

0

0

0
0

1

1 0
0

2

2 1 0
0

1

1 2 3 1
0

1 0 0 0

1 0 0

,
1 0

1

i
i

i
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I
i

i

N

i N N N
i

d d

d d d

d d d d

d d d d d

=

=

=

−

− − −
=

⎡ ⎤
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⎢ ⎥
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⎢ ⎥
⎢ ⎥=
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

∑

∑

∑

∑

B

L

L

L

M M M M O M

L

 

0

0

0
0
0

T

I

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B
M

.   (4) 

 
IB  is N N×  transition probability matrix of the transitions 

among transient states, whereas 
0
IB  is the N-dimensional 

vector of transition probabilities from transient states to 
absorbing state. Initially, the system begins with state 0 
and therefore the initial state probability vector α  is given 
by (1, 0, , 0).=α L  Probability distribution of the total num-
ber IX  of steps for the Markov chain to be absorbed to 
the state N can then be calculated using the following 
formula (see, e.g., Kao, 1997), 

 
1 0( ) ,   , 1, ,k

I I IP X k k N N−= = = +αB B L  (5) 
 

and its pgf and expected value are given by: 
 

1 0( ) ( ) ,I I IX z z z −= −α I B B   (6) 
1( ) ( )−= −α I B eI IE X .  (7) 

 
Since the total elapsed time to enter the state N from the 
beginning of the system is ,1 ,2 , ,

II I I XA A A+ + +L  we fi-
nally obtain the LT 

*( )I θ  and expected value of I, length 
of idle period, as following: 

 
* *( ) ( ( )),I II X Aθ θ=    (8) 
( ) ( ) ( ).I IE I E X E A=    (9) 

4.  DERIVATION OF THE LENGTH OF 
BUSY PERIOD 

Busy period begins right after the system size reaches 
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to N. Times between arrivals may be different during 
this period from the idle period. The server continues to 
provide the service exhaustively, that is, until there re-
mains no customer in the system. In this section, we 
obtain the probability distribution of the length B of 
busy period which is the elapsed time taken for the 
number of customers to fall to zero from N for the first 
time.  

Similarly to the case of idle period, we define BD  

as the total number of customers departed from the sys-
tem after service completion during .BA  Then the prob-
ability generating function ( )BD z  of BD  is given by: 

 
*( ) ( ( )),B BD z A G zμ μ= −   (10) 

 
and the probability distribution kδ  of BD  is: 

 

0
1[ ] ( ) | .
!

k

k B B zk

dP D k D z
k dz

δ =≡ = =  (11) 

 
In order to derive the probability distribution of B, 

we take different steps from the idle period case. The 
random process { ( ), 1, 2, }B nN nτ − = L  with state space 
{1, 2, 3, }L  can also be modeled as a discrete-time ab-
sorbing Markov chain. The imbedded points of this chain 
are the time epochs of customer arrivals (i.e., upward 
increases in system size) and this chain starts at the state 
N and absorbs to the state 1, not to the state 0. This is 
because the chain does not recognize when actually the 
number of customers falls to zero until there is an in-
crease of system size to one. As one can see in the fol-
lowing Figure 1, the chain’s absorbing epoch to the state 
1 (time point ⓑ) does not agree with the instant that the 
busy period terminates (time point ⓓ), and therefore, 
we should consider the number of steps that the chain 
takes until one step before it absorbs to state 1 (time 
point ⓒ), and then add to it the time that the system 
size falls to zero (length of interval between ⓒ and 
ⓓ). The Figure 1 shows a typical sample path during 
the busy period explaining the above reasoning.  

We compute the probability distribution of B by 
taking the following four steps: 

 

 
Figure 1. A typical sample path during busy period. 

(i) To find the probability distributions of Y, number of 
imbedded epochs before the chain enters to the state 1 
for the first time (Y = number of ‘x’ marks in Figure 1). 
(ii) To derive the probability distributions of the “gate-
way state” and of the time Z to reach it. The state at the 
step Y is called gateway state, to which the chain visitsat 
one step before absorbing (state at ⓒ in Figure 1). 
(iii) To calculate the number of batches served until the 
system size falls below 0 (i.e., number of downward de-
creases in system size between ⓒ and ⓓ in Figure 1) by 
conditioning the gateway state. 
(iv) To obtain the time between ⓒ and ⓓ by summing 
the service times of the batches in (iii). 

 
We explain the above steps in detail as following:  

(i) Probability distribution of Y: 
One-step transition probability matrix BP  of Markov 
chain { ( ), 1, 2, }B nN nτ = L  with state space {1, 2, 3, }L  is 
as follows: 
 

0

1
,B

B B
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= ⎢ ⎥
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0
P
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1 0

2 1 0

3 2 1 0

0 0
0

  ,B
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δ
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δ

∞
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=

∞

=
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑

B

M

.       (12) 

 
Then the number, Y, of steps before absorbing has the 
following probability distribution, pgf, and expected 
value (see e.g., Kao, 1997): 

 
1 0( ) ,   1, 2, 3,i

B BP Y i i−= = =βB B L , (13) 
1( ) ( ) ,BE Y −= −β I B e    (14) 

 
where (0, , 0, 1, 0, )=β L L  and 1 occurs at the ( -1)N th 
position. 

 
(ii) Probability distributions of gateway state and time to 
gateway: 
There are 1Y Y≡ −%  intervals and pgf ( )Y z%  of Y is 

 
1 01( ) ( ) ( ) ,B BY z Y z z

z
−= = −β I B B%   (15) 

 
and expected value of Y is given by 

 
( ) ( ) 1.E Y E Y= −%       (16) 

 
Now, we can derive the LT 

*( )Z θ  of the time Z to the 
gateway state using the random sum ,1 ,2B BZ A A= + +L  

, ,B YA+ %  
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*
* *

( )
( ) ( ) | ( ( ))

B
Bz A

Z Y z Y A
θ

θ θ
=

= =% % ,     (17) 
 

and expected value 

( ) ( ) ( ).BE Z E Y E A= %    (18) 

Since the gateway state is the number of customers 
at step Y, it is ( ).B YN τ  Denote ijφ ( , 2, 3,i j = L ) by the 
probability that the gateway state is j when starting at i, 
i.e., ( ( ) | (0) ).ij B Y BP N j N iφ τ≡ = =  Then we have the fol-
lowing: 

1

2
1

0

2

( ) ,                ,

( ) ( ) ,    .

i

B ik kj
k

ij i

B i B ik kj
k

i j

i j

φ
φ

φ

+

=
+

=

⎧
≠⎪

⎪= ⎨
⎪ + =⎪⎩

∑

∑

B

B B
   (19) 

By solving the above simultaneous linear equations with 
respect to ,ijφ  we can get ,N jφ  for 2, 3, ,j = L  which is 
the probability distribution of gateway state. There are, 
however, infinitely many states and therefore it is im-
possible to get an exact solution in a closed form of (19). 
Instead, noticing that we only need ,N jφ  for 2, 3,j =  

,L  not for all ijφ ( , 2, 3,i j = L ), and all entries after 
( 2)thk +  columns in 

thk  row are zeroes, we consider (N  
2) ( 2)N+ × +  submatrix of ,BB  and the first 2N +  en-

tries of 
0 .BB  This makes (19) finite system of simultane-

ous equations and an approximation solution could be 
obtained. 

 
(iii) Number of batches served until the system becomes 
empty by conditioning the gateway state: 
Let jL  be the number of batches served until the system 
size drops to zero, assuming that the gateway state is j. 
Denoting 1 ( 1, 2, )iG i≥ = L  by the size of the 

thi  batch, 
it is given by: 

{ }1 1 1min : ,  .j k kL k G G j G G j−= + + < + + ≥L L   (20) 

Then the probability distribution of jL  is, for 1, 2,k =  
, ,jL  as follows: 

1 1 1( ) ( ,   )j k kP L k P G G j G G j−= = + + < + + ≥L L  

1 1 1( 1) ( 1)k kP G G j P G G j−= + + ≤ − − + + ≤ −L L  
( 1) ( )= ( 1) ( 1).k kG j G j− − − −                 (21) 

where 
( )( )iG ⋅  denotes the i-fold convolution of the dis-

tribution of G. Then we obtain the pgf ( )jL z  of jL  as 
following: 

( 1) ( )

1 1
( ) ( ) [ ( 1) ( 1)]

j j
k k k k

j j
k k

L z z P L k z G j G j−

= =
= = = − − −∑ ∑   

( ) ( ) 0 (0)

1 1
( 1) { ( 1) ( 1)}

j j
k k k k

k k
z z G j z G j z G j

= =
= − − − − −∑ ∑  

( )

1
1 (1 ) ( 1),

j
k k

k
z z G j

=
= − − −∑                    (22) 

and expected value of jL  is  
 

' ( )

1
( ) (1) ( 1).

j
k

j j
k

E L L G j
=

= = −∑   (23) 

 
(iv) Time for the system to be empty from gateway: 

1 2 jLS S S+ + +L  is the time for the number of customers 
in the system to reach to zero from gateway state j, and 

the LT and mean of it are, * ( )
( ) |j jz S

L z L
θ

μ
μ θ=

⎛ ⎞= ⎜ ⎟+⎝ ⎠
 and 

( )1/ ( ),jE Lμ  because kS ’s are iid exponential with mean 

1/ .μ  Now, we finally obtain the LT 
*( )B θ  and mean of 

B as follows: 
 

* *
,

2
( ) ( ) N j j

j
B Z L μθ θ φ

μ θ

∞

=

⎛ ⎞
= ⋅ ⋅ ⎜ ⎟+⎝ ⎠

∑ , (24) 

,
2

1( ) ( ) ( ).N j j
j

E B E Z E Lφ
μ

∞

=

= + ⋅∑   (25) 

 
Remark 1: In case of 1,N =  we need a slight modifica-
tion because the starting state of the Markov chain is 

( 1),N =  which is absorbing state. Therefore, we divide 
the cases according to whether the first transition is to-
ward the state 1 or 2. The former happens when the inter 
arrival time is greater than the service time, and then the 
busy period is just the length of one single service time. 
For the latter, we can apply the procedure discussed 
above with 2.N =   

 
Remark 2: We verify Eq. (25) by matching it to the ex-
isting results as special cases of our model. Expected 
value of busy period of M/M/1 system with N policy, 
which is a special case of our model with Poisson arri-
vals and single batch ( 1),G =  is known to be ( ) /E B N=  
( ).μ λ−  Let 1μ =  and λ  be the arrival rate, then kδ =  

1 , 0, 1, 2, .
1 1

k

kλ
λ λ

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
L  After building the transition 

probability matrix BP  in (12), incorporating with ( )jE L  
,j=  we can obtain ( )E B  by means of (14), (16), (17), 

(19), and (25). The following Table 1 shows matching 
result for 5,  20N =  and 0.5,  0.8λ =  compared to the 
known result. 

 
Table1. Matching results of ( )E B  to M/M/1 N policy  

  ( ) /( )E B N μ λ= −  ( )E B of our method
5N = 0.5λ = 10 10.32 

 0.8λ = 25 25.34 
20N = 0.5λ = 40 40.15 

 0.8λ = 100 99.59 
 
Another matching is done for the general arrival 

model. Literatures (e.g., Chae and Kim, 2007; Kim and 
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Yang, 2011; Chae and Lim, 2008) provide analytic re-
sults on the busy period of G/M/1 with N policy. Ac-
cording to (Chae and Lim, 2008), however, even for the 
simplest deterministic arrival case, one should differen-
tiate N times the complex function to get the LT of busy 
period, which is almost intractable when N is not small. 
Instead, we consider D/M/1 with 1N =  and compare 

( )E B  calculated by our method with the known result 
0( ) 1/(1 )E B z= −  (e.g., Takacs, 1962), where 0z  is the solu-

tion of 
* ( )( ) a z
Bz A z e μ μμ μ − −= − =  and a is interarrival time 

(constant). In this case, derivation of our ( )E B  is modi-
fied to ( ) (1 ) (1/ ) ( | 2)a aE B e e E B Nμ− −= − × + × =  as indicated 
in Remark 1. Table 2 summarizes the comparison result 
when 1:μ =  

 
Table 2. Matching results of ( )E B to D/M/1 (N = 1) 

 0( ) 1 / (1 )E B z= −  ( )E B of our method
2a =  1.256 1.255 

1.25a =  2.703 2.834 
1.15a =  4.082 4.183 

 
From Table 1 and Table 2, we conclude our com-

putational results matches well to the existing results. 

5.  COST FUNCTION 

In this section, we minimize the total cost per unit 
time involved in a cycle. Let sC  be the setup cost incurred 
when the server initiates service because the number of 
waiting customers once reaches N. And let hC  be the 
holding cost per customer per unit time in the system. 
As the threshold N gets bigger, the length of a cycle 
becomes longer and setup cost per unit time gets lower, 
while the total customer holding cost becomes larger. 
Therefore, a proper level of N should be determined to 
trade these two costs off to achieve minimum overall 
cost. Expected setup cost per unit time is given by: 

 

(Setup cost per unit time) .
( ) ( )

sCE
E I E B

=
+

     (26) 

 
Expected holding cost during idle period is as following: 
expected number of visits to a given state i before the 
chain absorbs to state N starting from state 0 is the 
(0, )i th element of the fundamental matrix 

   
 2 1( )I I I

−+ + + = −I B B I BL   (27) 
 

of the chain. If the chain is in state i, it stays there for, 
on average, ( )IE A  and moves to the state j with prob-
ability ( ) ,I ijB  0, 1 , , 1.j i= +L  Therefore, the average area 
of the parallelogram (see Figure 2(a)) is given by ( )IE A  

( 1) / 2i j× + −  and by adding these areas up for all 0,i =  
1, , 1N −L  and 0, 1, , 1j i= +L  we obtain the expected  

 
(a) Between two embedded points 

 
 (b) Between gateway and absorbing points 

Figure 2. Average number of customers. 
 

number of customers during the idle period as follows:  
 

(Number of customers during idle period) IE L≡  

( ) ( )
1 1

1

0
0 0

1( ) ( ) .
2

N i

I I Iiji
i j

i j E A
− +

−

= =

⎡ ⎤⎧ ⎫+ −⎪ ⎪= − × ×⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∑I B B   (28) 

 
Similarly, the expected number of customers during the 
busy period is given by the following: 

 
(Number of customers during busy period) BE L≡  

( ) ( )
1

1

1,
2 2

1= ( ) ( )
2

i

B B BijN i
i j

i j E A
∞ +

−

+
= =

⎡ ⎤⎧ ⎫+ −⎪ ⎪− ×⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∑I B B

1,
2

( ) ( )
2N k k

k

k E L E Sφ
∞

+
=

+ ∑    (29) 

 
The first term of Eq. (29) is the expected total area up to 
the gateway state starting from N, and the second term is 
the expected total area from the gateway state to the 
state 0 (see Figure 2(b)). Finally, the expected total 
holding cost per unit time is given by: 

 
+(Total holding cost cost per unit time) .

( ) ( )

I B

h
L LE C

E I E B
= ×

+
(30) 

 
Finally, by adding the Eqs. (26) and (30) we have the 
total expected cost per unit time, and the optimal value 

*N  can be obtained by minimizing it. 

6.  NUMERICAL EXAMPLES 

Some numerical examples are introduced in this 
section to illustrate our model. The inter arrival times of 
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customers during idle and busy periods are assumed to 
be constant, 0.1IA =  and 10,BA =  and the reneging rate 

1η =  per unit time. We also assume the probability dis-
tribution of the number of customers in each batch is 
given by: 1 20.6,  0.4g g= =  and thus ( ) 1.4.E G =  Service 
rate of each batch is 1/ ( ) 0.14E Sμ = =  per unit time. 
Setup cost and holding cost are 1200 and 1per unit time, 
respectively ( 1200, 1).s hC C= =  Threshold level, N, is va-
ried from 5 to 20 to see the change of total expected cost 
per unit time, which is depicted in the Figure 3. In this 
setting, the optimal value of N is 14 and the minimum 
value of the total expected cost per unit time is 227.96. 
Since the optimal value 227.96 is less than 1% better 
than the values for 3, 4, , 18N = L  in this specific exam-
ple, a more flexible choice can be done among these 
values for the final result. 

The following Figure 4 shows, for fixed N =15 and 
different values of / ,B IA A  the change of total cost as 
the cost ratio /s hC C  increases. It is obvious, from Eqs. 
(26) and (30), that the total cost is a linear function of 

/ ,s hC C  as seen in Figure 4, where the slope is 1/ E (cy-
cle). If the ratio /B IA A  gets bigger, it implies either less 
customers arrive during busy period or more customers 
arrive during idle period. In the former case, busy period 
becomes shorter, while in the latter case idle period gets 
shorter. Length of cycle becomes smaller and therefore 
the slope of the line becomes steeper.  
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Figure 4. Graph of the total expected cost per unit time as 

/s hC C  increases for fixed N = 15 and different 
values of / .B IA A  
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Figure 5. Graph of the total expected cost per unit time as 

/B IA A  increases for fixed N = 15 and different 
values of / .s hC C  

 
Now, in the Figure 5, we fix N = 15 and see the 

change of total cost as the inter arrival time ratio /B IA A  
varies, instead of / .s hC C  For given / ,s hC C  total holding 
cost and setup cost are compensated of each other and 
we can obtain the optimal value of /B IA A  which attains 
minimum total cost per unit time. As an example, when 

/ 300,s hC C =  the total cost is minimized by controlling 
the arrival rate during busy period to be 1/30 of that 
during idle period.  

7.  SUMMARY AND CONCLUSION 

In this paper, we considered a general arrival and 
exponential service queueing system with N-policy. Cu-
stomers arrived while the server is idle are impatient and 
may leave the system without being served after expo-
nential time sojourn in the system. The arrival rates dur-
ing idle and busy periods are different from each other 
and the server provides service in batches. We divided a 
cycle into an idle period and a busy period, of which the 
probability distributions of lengths were obtained based 
on the absorbing Markov chain approach. A method to 
find the optimal N value was provided when there exist 
setup cost and waiting cost of customers in the system to 
minimize overall expected cost per unit time.  

By means of extensive numerical illustrations, the 
relationship among parameters such as / , /s h B IC C A A  and 

 
Figure 3. Graph of the total expected cost per unit time as N changes. 
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N are revealed, from which one can deduce the best op-
erating policy that minimizes the overall cost of the con-
sidered queueing system. 
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