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ABSTRACT 

Existing power plants may consume significant amounts of fuel and require high operating costs, partly because of 
poor electrical power output estimates. This paper suggests a continuous conditional random field (C-CRF) model to 
predict more precisely the full-load electrical power output of a base load operated combined cycle power plant. We 
introduce three feature functions to model association potential and one feature function to model interaction poten-
tial. Together, these functions compose the C-CRF model, and the model is transformed into a multivariate Gaussian 
distribution with which the operation parameters can be modeled more efficiently. The performance of our model in 
estimating power output was evaluated by means of a real dataset and our model outperformed existing methods. 
Moreover, our model can be used to estimate confidence intervals of the predicted output and calculate several prob-
abilities. 
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1.  INTRODUCTION 

As the demand for electric power has grown rap-
idly during the past several decades, so has the interest 
in the combined cycle power plant (CCPP). This is be-
cause CCPPs are known to be very efficient and require 
relatively low investment costs. A CCPP is composed of 
a gas turbine, steam turbine, and heat recovery system 
generators. The two turbines are combined in one cycle 
and the heat or gas flow transfers the energy from one of 
the turbines to the other. In general, a gas turbine ex-
hausts gas that is used to produce heat, which is used to 
make the steam required by the steam turbine (Niu and 
Liu, 2008). 

Numerous control strategies have been developed 
to reduce CCPP operational costs, but still a more advan-

ced control strategy is necessary to further reduce the 
entire operational cost. Tüfekci (2014) suggests that it is 
essential for a base load power plant to predict electrical 
power outputs correctly in order to attain a maximum 
profit. Existing plants, however, consume a significant 
amount of fuel and have high operating expenses partly 
because of poor prediction of electrical power output 
requirements. Particularly, the reliability and sustain-
ability of the gas turbine are highly affected by the pre-
diction of the power generation needs.  

Some studies adopting thermodynamic approaches 
to obtain an accurate prediction for the power generation 
have been done. In order to forecast the power genera-
tion accurately with these approaches, however, many as-
sumptions, such as the existence of some empirical rela-
tionships, are necessary since they account for unpre-
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dictability in their solution. Without these assumptions, 
any analysis of a real application calls for many nonlin-
ear equations, whose solution is either almost impossi-
ble or requires too much computational time and effort, 
and sometimes the result is still unsatisfactory and unre-
liable (Kesgin and Heperkan, 2005). 

Several studies employing machine learning meth-
ods that enable electrical power prediction as an alterna-
tive analysis to overcome these difficulties have been 
conducted. In (Kesgin and Heperkan, 2005), an artificial 
neural network and fuzzy logic are utilized to analyze 
various thermodynamic systems, including a CCPP. In 
Fan et al. (2016), the authors point out that electric load 
forecasting is very important for power utility and they 
present a support vector regression (SVR) model blended 
with differential empirical mode decomposition (DEMD) 
and auto regression to forecast electric load. Yadav and 
Srinivasan (2011) proposes a method for short-term load 
forecasting, which is based on a smooth transition auto-
regressive (STAR) model. In Kaya et al. (2012), the 
power of combined gas and steam turbines is predicted 
by means of a k-nearest neighbor smoother, multivariate 
linear regression, artificial neural network, and some other 
methods. Recently, Tüfekci (2014) has dealt with sev-
eral machine learning regression methods for the predic-
tive analysis of a thermodynamic system, which is a 
combined cycle power plant with one steam turbine and 
two heat recovery systems. In Clifton et al. (2013), the 
authors perform a study to predict a wind turbine’s po-
wer output by means of a regression tree. In Prokop et al. 
(2013), an application of evolutionary fuzzy rules is 
presented to model and predict the power output of a 
real-word photovoltaic power plant (PVPP). In Yu and 
Xu (2014), a combinational approach based on impro-
ved back propagation (BP) neural network for short-
term gas load forecasting is proposed and the genetic 
algorithm is employed to optimize the network. In Al-
Rashidi and El-Naggar (2010), the authors suggest a 

novel method for annual peak load forecasting in elec-
trical power system, which employs a particle swarm 
optimization to find the optimal model parameters of the 
model. Xie and Hong (2015) presents an integrated pro-
babilistic electric load forecasting solution, which con-
sists of three components: pre-processing, forecasting, 
and post-processing. In the forecasting component, time 
series modeling and neural networks are employed to 
forecast the electric load. With the increase of the re-
searches employing machine learning methods to pre-
dict electrical power, several researches compare ma-
chine learning methods.  

Because the gas turbine power output mostly depends 
on the ambient parameters such as ambient temperature, 
atmospheric pressure, and relative humidity, these are 
the input variables of our model. Moreover, exhaust 
steam pressure should be included in the input variables 
since steam turbine power output has a direct relation-
ship with the exhaust vacuum level. Figure 1 shows the 
configuration of the gas turbine. Since various relation-
ships exist among dataset variables for the prediction of 
electrical power output, a model that can deal well with 
complicated structure, including a wide variety of arbi-
trary and non-independent input features is desirable to 
obtain an accurate prediction. To the best of our knowl-
edge, however, there is no previous research result con-
sidering various relationships among variables in the 
described data set. In order to consider the various rela-
tionships among the variables, a continuous conditional 
random field (C-CRF) is employed in this paper to pre-
dict the full load electrical power output of a base load 
operated combined cycle power plant.  

The C-CRF model is appropriate for this regression 
problem for two reasons. First, the C-CRF model can 
accommodate many input variables and represent com-
plex dependence relations among them into the mathe-
matical description. Second, the C-CRF model can pro-
vide not only point estimation, but also an interval esti-

 

 
Figure 1. Configuration of the gas turbine (http://www.understandingchp.com). 
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mation of the predicted value by considering similarity 
among the outputs. CRF was originally developed for 
classification of sequential data (Lafferty et al., 2011), 
and has been adapted for many applications in various 
areas, including computer vision (Kumar and Hebert, 2003). 
Recently, CRF has been extended to regression by al-
lowing the target variable to be continuous (C-CRF) and 
applied to regression on spatial-temporal data (Liu et al., 
2004). 

In this study, we construct an association potential, 
which is part of the C-CRF model, using machine learn-
ing methods: artificial neural network (ANN), regres-
sion tree (RT), and multiple linear regression (MLR). 
These methods have shown high predictive validity in 
electrical power output prediction problems. Euclidean 
similarity is introduced for interaction potential, which 
is another part of C-CRF. The model is trained with the 
help of a multivariate Gaussian distribution, and then is 
evaluated with a real data set. The prediction accuracies 
of the suggested model are compared with those in (Tü-
fekci, 2014). Additionally, some application examples are 
provided in order to show the effectiveness of the model. 

The remainder of this paper is organized as follows. 
We introduce the C-CRF in Section 2 and show how to 
apply it to predict the power of a combined cycle power 
plant in Section 3. In Section 4, we evaluate the sugge-
sted model with a real data set, and compare the model 
with those in Tüfekci (2014) based on the prediction 
results. Finally, Section 5 concludes the paper.  

2.  CONTINUOUS CONDITIONAL RANDOM 
FIELD  

C-CRF is one of the probabilistic graphical models 
used to express the complex dependence structure among 
system output variables by conditional probability dis-
tributions. A key advantage of the C-CRF is the flexibil-
ity to include a wide variety of arbitrary and non-in-
dependent features as inputs (McCallum, 2002). In addi-
tion, the C-CRF has a power of explanation because it is 
a probabilistic graphical model, as depicted in Figure 2, 
where each node denotes a variable and each edge de-

notes a relationship between the two nodes. Here, 
( )ix  

and yi are values of the ith input and output variables, 
respectively. We adopt the C-CRF structure depicted in 
Figure 2 to construct the proposed model.  

A C-CRF can be represented as a conditional prob-
ability distribution P( )y x  as follows: 

 

( )( ( )
1

1P( ) exp , ,
( , , ) =

= ∑n i
iiy A y

z x α β
αx x  

( )), , , ,+∑ i ji j I y y xβ       (1) 

 
where n is the number of observations, α  and β  are 
vectors of parameters, x is the vector of input variables, 
and ( , , )Z x α β  is a normalization factor that ensures 
P( )y x  a proper probability distribution: 

 

( )( ( )
1( , , ) exp , ,
=

= ∑∫
n i

iiZ A yα β αx x  

( )), , , , .+∑ i ji j I y y dyβ x       (2) 

 
In (1), ( )( ), , i

iA yα x  and ( ), , ,i jI y yβ x  are the as-
sociation potential between the ith input variable vector 

( )ix  and output variable yi (represented as thick lines in 
Figure 2), and the interaction potential between outputs 
yi and yi (drawn in fine lines in Figure 2), respectively. 
The association potential indicates the relationship be-
tween inputs and outputs, while the interaction potential 
indicates the relationship among outputs. In the C-CRF 
application, the association and interaction potentials are 
often defined as linear combinations of fixed feature 
functions in terms of α  and β  as follows (McCallum, 
2002): 

 

( ) ( )1( ) ( )
1, , , ,
=

= ∑Ki i
i k k ikA y f yαα x x       (3) 

( ) ( )2
1, , , , , .
=

= ∑K
i j k k i jkI y y g y yββ x x     (4) 

 
Computing the normalization function in (2) is es-

sential to obtain the exact probability noted in (1), but 
doing so is very complicated and sometimes intractable. 
In Radosavljevic et al. (2010), it is shown that if A  
( )( ), , i

iyα x  and ( ), , ,i jI y yβ x  are defined as quadratic 
functions in terms of ,y  then the sum ( )( ), , +i

iA yα x  
( ), , ,i jI y yβ x  can be transformed into the form of ( −y  

1) ( )− − +Tμ μyΣ constant. This expression corresponds to 
a multivariate Gaussian distribution with a mean vector 

μ  and a covariance matrix .Σ  If the C-CRF is con-
verted into the form of a multivariate Gaussian distribu-
tion, then the learning task of the parameters becomes 
relatively easier. A more detailed explanation can be 
found in Section 3. 

Learning a C-CR Frequires defining values of the 
parameters α  and ,β  there by maximizing the condi-

tional log-likelihood ( )( )
1( , ) logP ,
=

=∑n i
iiL yα β x  and then 

 

 
Figure 2. C-CRF structure. 
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the result would be obtained as follows: 
 

( )
,

ˆˆ( , ) arg max ( , ) .= L
α β

α β α β     (5) 

 
Learning can be done by applying a standard opti-

mization algorithm, such as the gradient ascent method. 
The inference task requires finding the output values for 
a given set of input values and estimated parameters, 
such that the conditional probability Pr( )y x  is maxi-
mized: 

 
ˆ arg max P( ).=

y
y y x    (6) 

3.  THE C-CRF MODEL FOR POWER  
GENERATION PREDICTION 

In this section, we describe in detail the proposed 
C-CRF model for regression analysis in power genera-
tion. We introduce the same input and target variables as 
used in Tüfekci (2014). More specifically, ambient tem-
perature (AT, measured in degrees in Celsius), atmos-
pheric pressure (AP, in units of millibars), relative hu-
midity (RH, measured as percentages), and exhausts 
steam pressure (or vacuum, V, in cmHg) are introduced 
as input variables in the dataset. As for the target vari-
able, full load electrical power (PE, in megawatt) is used. 
All measurements are obtained through the sensors and 
are averaged hourly to provide the values of the input 
and target variables.  

 ANN, RT, and MLR were applied to predict the 
full load electrical power output in previous study (Al-
Rashidi and El-Naggar, 2010). Employing the input 
variables as attributes, therefore, we introduce three fea-
ture functions to model the association potential that 
describes the dependency between the input and target 
variables for a given observation 

( )ix  as follows: 
 

( )2( ) ( )
1( , ) ANN( ) ,= − −i i

i if y yx x  

( )2( ) ( )
2( , ) RT( ) ,= − −i i

i if y yx x   (7) 

( )2( ) ( )
3( , ) MLR( ) ,= − −i i

i if y yx x  

 
where 

( )ANN( ),ix  
( )RT( ),ix  and 

( )MLR( )ix  are the out-
puts of ANN, RT, and MLR, respectively. These feature 
functions agree with the basic principle for association 
potentials, that is, their values must increase for more 
accurate predictions. As a result, the following linear 
combination of these features provides insight on how 
much one can trust the prediction methods ANN, RT, 
and MLR based on the learned parameter vector 1( ,= αα  

2 3, ) :α α  

( ) ( ) ( )2 2( ) ( ) ( )
1 2A , , ANN( ) RT( )= − − − −i i i

i i iy y yα αα x x x  

( )2( )
3 MLR( ) .− − i

iyα x          (8) 

 
For example, a large 2α  places big penalty for mis-

takes in the RT model and therefore, each iα  acts as a 
quality indicator of the corresponding prediction method. 

To model the interaction potential we introduce a 
feature function: 

 

( )2,( , , ) ,= − −i j i j i jg y y S y yx   (9) 
 

where ,i jS  denotes a similarity between data i and ,j  
and the corresponding interaction potential is given by: 

 
2

,( , , , ) ( ) .= − −i j i j i jI y y S y yββ x   (10) 
 

The learned parameter β  represents the level of correla-
tion within neighboring outputs. That is, a large value of 
β  implies a high correlation between iy  and .iy   

Finally, the resulting C-CRF model is given by: 
 

( )23 ( )
1

1P( ) exp ( , )
( ) =

⎧= − −⎨
⎩
∑ ∑ i

k i k ii ky y f y
z x

αx x
 

}2
,, ( ) .+ − −∑ i j i ji j S y yβ              (11) 

 
We further map the distribution shown in Eq. (11) 

to a multivariate Gaussian distribution to reduce compu-
tational complexity. As one can see in Eq. (2), it is nec-
essary to solve complicated integral calculus in order to 
obtain the C-CRF parameters. In Eq. (11), the potentials 
can be represented as quadratic forms as follows: 

 

1/ 2/ 2

1P( )
(2 )

=
n

y
π

x
Σ

  

( )11exp ( ( )) ( ) .
2

−⎛ ⎞× − − −⎜ ⎟
⎝ ⎠

Ty yμ μΣx x   (12) 

 
In the Gaussian mapping, the inverse of the covariance 
matrix 

1−Σ  is the sum of two ×n n  matrices, namely, 
1 1 22( ),− = +Σ Q Q  where  

 
3

1 1
,

, if ,

0, otherwise,
=

⎧ =⎪= ⎨
⎪⎩

∑ kk
i j

i j
Q

α and 

,2
,

,

if ,

- , otherwise.

⎧ =⎪= ⎨
⎪⎩

∑ i jj
i j

i j

S i j
Q

S

β

β
             (13) 

 
Further, the mean vector ( )xμ  is computed as Σθ,  

where 
3

12 ( ).
=

= ∑ k kk fαθ x  
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With the multivariate Gaussian distribution that aims 
at maximizing the log-likelihood, the learning of the C-
CRF in Eq. (5) becomes a convex optimization problem. 
As mentioned above, the gradient ascent method can be 
applied to learn the parameters. Specifically, we maxi-
mize the log-likelihood with respect to log kα  and log β  
instead of kα  and ,β  which results in the new optimiza-
tion problem becoming unconstrained. Derivatives of 
the log-likelihood function and updates of α  and β  in 
gradient ascent can be computed as follows: 

 

,
log
∂ ∂

=
∂ ∂k

k k

L Lα
α α

,
log
∂ ∂

=
∂ ∂

L Lβ
β β

    (14) 

log log ,
log
∂

= +
∂

new old
k k

k

Lα α η
α

 

log log .
log
∂

= +
∂

new old Lβ β η
β

      (15) 

 
Now, the prediction shall be the expected value of Gau-
ssian model, which is equal to the mean of the distribu-
tion: 

 
ˆ arg max P( ) .= =

y
y y Σθx      (16) 

4.  EXPERIMENT 

In this section, an experiment to illustrate our mo-
del is provided. We describe the data used in the expe-
riment, and then utilize the model to predict the proba-
bility distribution of the target value when the four input 
variables are given. Finally, the results are compared to 
existing methods to validate our model. 

4.1 Data 

We obtained a combined cycle power plant dataset 
from the UCI Machine Learning Repository (http://archi 
ve.ics.uci.edu/ml/). It is composed of 9,568 records col-
lected while the combined cycle power plant was set to 
work with a full load over 674 days, contained four in-
put variables (ambient temperature (AT), ambient pres-
sure (AP), relative humidity (RH), and vacuum (V)), and 
a target variable (full load electrical power output (PE)). 
Table 1 shows the basic statistics of the dataset.  

 
Table 1. Basic Statistics of Dataset 

 AT (°C) V(cmHg) AP(mb) RH(%) PE(MW)
Min 1.81 25.36 992.89 25.56 420.26
Max 37.11 81.56 1033.30 100.16 495.76
Mean 19.65 54.31 1013.26 73.31 454.37

Standard 
deviation 7.45 12.71 5.94 14.60 17.07 

Table 2. Correlations among Input Variables 

 AT V AP RH PE
AT 1 - - - - 
V 0.84411 1 - - - 

AP -0.50755 -0.41350 1 - - 
RH -0.54253 -0.31219 0.09957 1 - 
PE -0.94813 -0.86978 0.51843 0.38979 1 

 
Table 2 contains the correlation matrix, indicating 

that the variables do not seem to be independent of each 
other. 

4.2 Modeling and Evaluation 

In order to validate and compare the performance 
of our model to those described in (Tüfekci, 2014), 5 2×  
cross-validation is applied. Root mean squared error 
(RMSE) and mean absolute error (MAE) are calculated 
and listed in Table 3 to assess the prediction accuracy, 
where: 

 
2

1
ˆ( )

RMSE ,=
−

= ∑n
i ii y y

n
   (17) 

1
1 ˆMAE .

=
= −∑n

i ii y y
n

  (18)  

 
Euclidean similarity ,i jS  is employed to model the 

interaction potential, where ,i jS  between two records  
and j is calculated as follows: 

 
, 1/(1 Euclidean Distance( , )).= +i jS i j      (19) 

 
Note that when we calculate the Euclidean distance, in order 
to remove the scale effect of the variables, anormalized 

Euclidean distance, 

2
4

1
1 ( ) ,

std( )=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ ik jkk

k
x x

x
 is used, 

where std( )kx  denotes the standard deviation of ,kx  and 

ikx  denotes the value of variable k of the record i.  
With the association and interaction potentials, we 

constructed a C-CRF model and transform it into a mul-
tivariate Gaussian distribution as in Eqs. (11) and (12). 
Parameters are estimated by applying Eqs. (14) and (15) 
with arbitrarily chosen initial values. The resulting esti-
mated values of parameters are shown in Table 4. 

 
Table 3. RMSE and MAE of ANN, RT, and MLR 

 RMSE MAE 
ANN 4.074 3.205 
RT 4.212 3.268 

MLR 4.412 3.539 
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Table 4. Estimated parameters values 

Parameter Estimated Value 

1α  0.2002605 

2α  0.1500076 

3α  0.1496928 
β  0.2408714 

 
Table 5. Comparison results between our C-CRF model 

and those described in Tüfekci (2014) 

 RMSE MAE 
Least Median Square 4.888 3.859 
Support Vector Poly Kernel 4.887 3.859 
K* 4.552 3.532 
Bagging REP Tree 4.239 3.220 
Model REP Tree 4.462 3.460 
Model Tree Regression 4.428 3.428 
REP Trees 4.518 3.424 
Our C-CRF Model 3.978 2.970 

 
We finally obtain the complete model in a multi-

variate Gaussian distribution form as follows: 
 

( )1 1P( ) exp ( )
5513.672453 2

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

y x
T

y xμ  

( )1 ( ) .−× −Σ y xμ          (20) 
 
The RMSE and MAE of the predicted values ob-

tained by Eq. (16) in our model are compared to those 
provided in the last two columns of Table 10in (Tüfekci, 
2014). The result is presented in Table 5: 

Table 5 indicates that the C-CRF model presented 
in the paper shows the lowest RMSE and MAE (written 
in boldfaced numbers) among all models. 

 

4.3 Application 

The C-CRF model presented here is not only util-
ized to predict the value of power generation by CCPP, 
but also used in various other ways. For example, it can 
be used to derive an interval estimation of the CCPP’s 
power generation and to calculate the probability distri-
bution of it for a given set of input variables. We have 
selected three example problems to illustrate its applica-
bility in this section. 

As for the interval estimation and probability calcu-
lation, we randomly selected a record, i.e., record number 
6663 in the dataset, whose feature values are: 6663AT = 
26.63°C, 6663AP = 1,012.66mb, 6663V = 64.44cmHg, 6663RH  
= 61.19%, and 6663PE = 442MW. We also obtained 6663( )xμ  
= 459.45, and 

1
6663 6663,6663( )−= Σσ = 21.46. The resul- 

 
Figure 3. Probability density function of the PE of record 

6663. 
 
tant probability density function of PE (in MW) is as 
follows: 

 

( )
2

6663 6663
1 ( 459.45)P exp .

53.79 921.0632
⎛ ⎞−

= −⎜ ⎟⎜ ⎟
⎝ ⎠

xPE x    (21) 

 
Since the mean and standard deviation are 459.45 

and 21.46, respectively, the 95% confidence interval for 
the target value PE can be easily calculated as 459.45 
±1.96×21.46 = (417.39, 501.51), which contains the real 
output value 6663PE = 442MW. A graph of the probabil-
ity density function (blue line), corresponding to the 
confidence interval (hatched area) and the real output 
value (red line) are depicted in Figure 3.  

 
 
The next example demonstrates the probability that 

the CCPP’s power generation is greater than 470MW 
when AT, AP, V, and RH are given as in the record 6663. 
It is formally described as: 
 

6663 6663Pr( 470 26.63 C,> = °PE MW AT  

6663 66631,012.66cmHg, 64.44cmHg,= =AP V  

6663 61.19%).=RH          (22) 
 
Since 6663PE  follows a normal distribution with a 

mean of 459.45 and a standard deviation of 21.46, it is 
easily transformed into standard normal distribution form 
and calculated as: 

470 459.45Pr 0.4916 0.6885,
21.46
−⎛ ⎞> = =⎜ ⎟

⎝ ⎠
Z    (23) 

where Z denotes the random variable which follows a 
standard normal distribution.  

Lastly, we randomly selected two records, 143 and 
867, from the dataset. Using our model, we calculated 
the probability that the PE of record 867 is greater than 
that of record 143, that is, 143 867Pr( ),<PE PE  while util-
izing the respective input variables for each record. The 
input variables of record 143are: 143AT = 23.02°C, 143AP  
= 1,011.74mb, 143V = 59.21cmHg, and 143RH = 83.18%. 
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Input variables of record 843 are: 867AT = 29.05°C, 867AP  
= 1,011.33mb, 867V = 70.32cmHg, and 867RH = 72.50%. 
The probability density functions of 143PE  and 867PE  

are presented in (24) and (25): 
 

2

143 143
1 ( 432.66)( ) exp ,

49.43 777.7568
⎛ ⎞−

= −⎜ ⎟⎜ ⎟
⎝ ⎠

x xP PE    (24) 

2

867 867
1 ( 456.71)( ) exp .

53.67 916.7762
⎛ ⎞−

= −⎜ ⎟⎜ ⎟
⎝ ⎠

x xP PE    (25) 

 
A simulation approach is subsequently adopted to solve 
the problem. 10,000 random numbers having the prob-
ability density functions presented in Eqs. (24) and (25) 
are generated, respectively, and two sets of random num-
bers are compared. More precisely, {1 1 : 1, 2, ,= = LiD D i  

}10,000  and { }2 2 : 1, 2, , 10,000= = LjD D j  are the sets of 
random numbers having the probability density func-
tions presented in Eqs. (25) and (26), respectively. As a 
result, the probability 143 867Pr( )<PE PE  is calculated as 
follows: 

 
10,000 10,000

1 21 1
143 867

( )
Pr( )

10,000 10,000
= =

>
< =

×
∑ ∑ i ji j I D D

PE PE   (26) 

 
where 1 2( )>i jI D D  is an indication function that returns 
1 if 1 2>i jD D  and 0, otherwise. By means of this ap-
proach, 143 867Pr( )<PE PE  is calculated as 0.8551. 

5.  CONCLUSION 

This study proposed a C-CRF model to predict the 
power of a CCPP at full load. Machine learning appro-
aches were preferred to help ensure accurate prediction 
instead of thermodynamic approaches, which involve 
some assumptions with many nonlinear equations and 
require significant computational time and effort.  

In this study, we have introduced three feature func-
tions with machine learning methods to model the asso-
ciation potential, and a feature function with Euclidean 
similarity to model the interaction potential. With poten-
tials represented by a combination of feature functions, 
the C-CRF model is transformed into a multivariate Ga-
ussian distribution with which training and inference 
tasks were performed. The accuracies in terms of RMSE 
and MAE were compared to show that our model out-
performed existing methods. The presented model can 
be applied to any regression application, such as interval 
estimation. 
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