References
- Antunes, F.V. and Rodrigues, D.M. (2008), "Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters", Eng. Fract. Mech., 75(10), 3101-3120. https://doi.org/10.1016/j.engfracmech.2007.12.009
- Batdorf, S.B. and Budiansky, B. (1949), "A mathematical theory of plasticity based on the concept of slip", National Advisory Committee for Aeronautics, TN 1871.
- Brewer, R. (1964), Fabric and mineral analysis of soils. Wiley: New York, 129-158.
- Brinkgreve, R.B.J., Broere, W. and Waterman, D. (2006), Plaxis, finite element code for soil and rock analyses, Users Manual, PLAXIS b.v., The Netherlands.
- Calladine, C.R. (1971), "A microstructural view of the mechanical properties of saturated clay", Geotech., 21(4), 391-415. https://doi.org/10.1680/geot.1971.21.4.391
- Caputo, F., Lamanna, G. and Soprano, A. (2013), "On the evaluation of the plastic zone size at the crack tip", Eng. Fract. Mech., 103, 162-173. https://doi.org/10.1016/j.engfracmech.2012.09.030
- Chang, C.S. and Hicher, P.Y. (2005), "An elasto-plastic model for granular materials with macrostructural consideration", Int. J. Solid. Struct., 42, 4258-4277. https://doi.org/10.1016/j.ijsolstr.2004.09.021
- Christofferson, C., Mehrabadi, M.M, Nemat-Nasser, S.A. (1981), "Macromechanical description of granular behavior", J. Appl. Mech., 48, 339-344. https://doi.org/10.1115/1.3157619
- Drucker, D.C. (1959), "A definition of a stable inelastic material", J. Appl. Mech., 26, 101-106.
- Fathi, A., Moradian, Z., Rivard, P. and Ballivy, G. (2016), "Shear mechanism of rock joints under pre-peak cyclic loading condition", Int. J. Rock Mech. Min. Sci., 83, 197-210.
- Ghadrdan, M., Sadrnejad, S.A. and Shaghaghi, T. (2015), "Numerical evaluation of geomaterials behavior upon multiplane damage model", Comput. Geotech., 68, 1-7. https://doi.org/10.1016/j.compgeo.2015.03.008
- Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete , 16(4), 605-623, https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. (2015a), Coupled experimental-numerical fracture mechanics, Lambert academic press, Germany
- Haeri, H. (2015b), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881
- Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
- Haeri, H. (2015d), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
- Haeri, H. and Marji, M.F. (2016b), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 1-10. https://doi.org/10.1007/s12517-015-2098-7
- Haeri, H. and Sarfarazi, V. (2016), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-127. https://doi.org/10.12989/cac.2016.17.1.107
- Haeri, H., Marji, M.F. and Shahriar, K. (2014c), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab J Geosci., 8(6), 3915-3927 https://doi.org/10.1007/s12517-014-1489-5
- Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2015), "On the HDD analysis of micro crack initiation, propagation, and coalescence in brittle materials", Arab. J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5
- Haeri, H., Shahriar, K., Marji, M.F. and Moaref, Vand P. (2014a), "An experimenta and numerical study of crack propagation and cracks coalescence in the pre-cracked rock-like disc specimens under compression", Int. J. Rock Mech. Min. Sci., 67, 20-28.
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015), "A coupled numerical-experimental study of the breakage process of brittle substances", Arab. J. Geosci., 8(2), 809-825. https://doi.org/10.1007/s12517-013-1165-1
- Maier, G. and Hueckel, T. (1979), "Nonassociated and coupled flow rules of elastoplasticity for rock-like materials", Int. J. Rock Mech., Min. Sci. Geomech. Abst., 16, 77-92.
- Mandel, J. (1964), "Conditions de Stabilite et Postulat de Drucker", Proceeding of the IUTAM Symposium on rheology and soil mechanics, Kravichenko, J., Sirieys, P.M. (Eds.), Springer-Verlag, Berlin, 58-68.
- Mroz, Z. (1963), "Non-associated flow laws in plasticity", J. Mech., 2, 21-42.
- Mroz, Z. (1966), "On forms of constitutive laws for elastic-plastic solids", Arch. Mech. Sto., 18, 1-34.
- Nakata, Y., Hyodo, M., Murata, H. and Yasufuku, N. (1998), "Flow deformation of sands subjected to principal stress rotation", Soil. Found., 38(2), 115-128. https://doi.org/10.3208/sandf.38.2_115
- Nemat-Nasser, S., Mehrabadi, M.M. (1983), "Stress and fabric in granular masses, mechanics of granular materials", New models and constitutive relations (Eds. J.T. Jenkins and M. Satake), 1-8, Elsevier Sci. Pub.
- Nemcik, J., Mirzaghorbanali, A. and Aziz, N. (2014), "An Elasto-Plastic constitutive model for rock joints under cyclic loading and constant normal stiffness conditions", Geotech. Geol. Eng., 32(2), 321-335. https://doi.org/10.1007/s10706-013-9716-5
- Pande, G.N. and Sharma, K.G. (1983), "Multi-laminate model of clays-a numerical evaluation of the influence of rotation of the principal stress axes", Int. J. Numer. Anal. Method. Geomech., 7(4), 397-418. https://doi.org/10.1002/nag.1610070404
- Sadrnejad, S.A. and Pande, G.N. (1989), "A multilaminate model for sands", Proceedings of the 3rd International Symposium on Numerical Models in Geomechanics (NUMOG), Niagara Falls, Canada, Pietruszczak S, Pande GN (eds). Elsevier: London, 17-27.
- Samui, P. (2013), "Multivariate Adaptive Regression Spline (Mars) for prediction of elastic modulus of jointed rock mass", Geotech. Geol. Eng., 31(1), 249-253. https://doi.org/10.1007/s10706-012-9584-4
- Schadlich, B. and Schweiger, H.F. (2013), "A multilaminate constitutive model accounting for anisotropic small strain stiffness", Int. J. Numer. Anal. Method. Geomech., 37(10), 1337-1362. https://doi.org/10.1002/nag.2089
- Scharinger, F. (2007), "A multilaminate model for soil incorporating small strain stiffness", Ph.D. Thesis, Gruppe Geotechnik Graz, Heft 31, Graz University of Technology, Austria.
- Scharinger, F. and Schweiger, H.F. (2005), "Undrained response of a double hardening multilaminate model for soils", Proceedings of the 11th International Conference of the International Association of Computer Methods and Advances in Geomechanics (IACMAG), Turin, Italy, Barla G, Barla M (eds). Patron Editore: Bologna, 505-512.
- Taylor, G.I. (1958), "Plastic strain in metals", J. Inst. Metal., 62, 307-324 (Reprinted in the Scientific Papers of G. I. Taylor 1. Cambridge University Press: Cambridge, U.K.).
- Varadarajan, A., Sharma, K.G, Hashemi, M. Strain (2003), "Softening behaviour of a schistose rock mass under triaxial loading", Technology roadmap for rock mechanics, S. Africa Inst. Min. Metall.
- Wang, T.T. and Huang, T.H. (2014), "Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: Theory analysis and numerical modeling", Rock Mech. Rock Eng., 47(2), 643-657. https://doi.org/10.1007/s00603-013-0405-8
- Wiltafsky, C. (2003), "A multilaminate model for normally consolidated clay", Ph.D. Thesis, Gruppe Geotechnik Graz, Heft 18, Graz University of Technology, Austria.
- Wu, J.Y. and Xu, S.L. (2011), "An augmented multicrack elastoplastic damage model for tensile cracking", Int. J. Solid. Struct., 48(18), 2511-2528. https://doi.org/10.1016/j.ijsolstr.2011.05.001
- Xin, G., Hangong, W., Xingwu, K. and Liangzhou, J. (2010), "Analytic solutions to crack tip plastic zone under various loading conditions", Eur. J. Mech.-A/Solid., 29(4), 738-745. https://doi.org/10.1016/j.euromechsol.2010.03.003
- Yi, H., Jingjie, C. and Gang, L. (2010), "A new method of plastic zone size determined based on maximum crack opening displacement", Eng. Fract. Mech., 77(14), 2912-2918. https://doi.org/10.1016/j.engfracmech.2010.06.026
- Zienkiewicz, O.C. and Pande, G.N. (1977), "Time-dependent multilaminate model of rocks-a numerical study of deformation and failure of rock masses", Int. J. Numer. Anal. Method. Geomech., 1(3), 219-247. https://doi.org/10.1002/nag.1610010302
Cited by
- Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
- Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D vol.20, pp.4, 2016, https://doi.org/10.12989/cac.2017.20.4.429
- A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
- Displacement prediction in geotechnical engineering based on evolutionary neural network vol.13, pp.5, 2016, https://doi.org/10.12989/gae.2017.13.5.845
- A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.343
- Finite element modeling of contact between an elastic layer and two elastic quarter planes vol.26, pp.2, 2020, https://doi.org/10.12989/cac.2020.26.2.107
- Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
- Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565
- Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.099
- Z shape joints under uniaxial compression vol.12, pp.2, 2016, https://doi.org/10.12989/acc.2021.12.2.105