$\label{eq:KYUNGPOOK Math. J. 56(2016), 371-386} $$ $$ $$ http://dx.doi.org/10.5666/KMJ.2016.56.2.371 $$ pISSN 1225-6951 $$ eISSN 0454-8124 $$ © Kyungpook Mathematical Journal$

Subalgebras and Ideals of BCK/BCI-Algebras in the Framework of the Hesitant Intersection

Young Bae Jun*

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

 $e ext{-}mail:$ skywine@gmail.com

ABSTRACT. Using the hesitant intersection (\mathbb{n}), the notions of \mathbb{n} -hesitant fuzzy subalgebras, \mathbb{n} -hesitant fuzzy ideals and \mathbb{n} -hesitant fuzzy p-ideals are introduced, and their relations and related properties are investigated. Conditions for a \mathbb{n} -hesitant fuzzy ideal to be a \mathbb{n} -hesitant fuzzy p-ideal are provided. The extension property for \mathbb{n} -hesitant fuzzy p-ideals is established.

1. Introduction

The notions of Atanassov's intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc. are a generalization of fuzzy sets. The concept of hesitant fuzzy sets, which is introduced by Torra [6, 7], is another generalization of fuzzy sets. The hesitant fuzzy set is very useful to express peoples hesitancy in daily life, and it is a very useful tool to deal with uncertainty, which can be accurately and perfectly described in terms of the opinions of decision makers. Xu and Xia [11] proposed a variety of distance measures for hesitant fuzzy sets, based on which the corresponding similarity measures can be obtained. They investigated the connections of the aforementioned distance measures and further develop a number of hesitant ordered weighted distance measures and hesitant ordered weighted similarity measures. Xu and Xia [12] defined the distance and correlation measures for hesitant fuzzy information and then discussed their properties in detail. Also, hesitant fuzzy set theory is used in decision making problem etc. (see [5, 8, 9, 10, 12]), and is applied to residuated lattices and MTL-algebras (see [2, 4]).

In this paper, we introduce the notions of hesitant fuzzy subalgebras, hesitant fuzzy ideals and hesitant fuzzy p-ideals based on the hesitant intersection (\bigcirc),

Received September 7, 2014; accepted December 10, 2015.

 $2010 \ {\rm Mathematics \ Subject \ Classification:} \ 06F35, \ 03G25, \ 06D72.$

Key words and phrases: Hesitant intersection, Hesitant fuzzy subalgebra, Hesitant fuzzy ideal, Hesitant fuzzy p-ideal.

^{*} Corresponding Author.

briefly, \bigcirc -hesitant fuzzy subalgebras, \bigcirc -hesitant fuzzy ideals and \bigcirc -hesitant fuzzy p-ideals, in BCK/BCI-algebras. We investigate their relations and related properties. We provide conditions for a \bigcirc -hesitant fuzzy ideal to be a \bigcirc -hesitant fuzzy p-ideal. We finally establish the extension property for \bigcirc -hesitant fuzzy p-ideals.

2. Preliminaries

An algebra (L; *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

(I)
$$(\forall x, y, z \in L)$$
 $(((x * y) * (x * z)) * (z * y) = 0),$

(II)
$$(\forall x, y \in L) ((x * (x * y)) * y = 0),$$

(III)
$$(\forall x \in L) (x * x = 0),$$

(IV)
$$(\forall x, y \in L) (x * y = 0, y * x = 0 \Rightarrow x = y).$$

If a BCI-algebra L satisfies the following identity:

(V)
$$(\forall x \in L) (0 * x = 0),$$

then L is called a BCK-algebra.

Any BCK/BCI-algebra L satisfies the following conditions:

$$(2.1) \qquad (\forall x \in L) (x * 0 = x),$$

$$(2.2) \qquad (\forall x, y, z \in L) (x < y \Rightarrow x * z < y * z, z * y < z * x),$$

$$(2.3) (\forall x, y, z \in L) ((x * y) * z = (x * z) * y),$$

$$(2.4) (\forall x, y, z \in L) ((x * z) * (y * z) \le x * y)$$

where $x \leq y$ if and only if x * y = 0.

Any BCI-algebra X satisfies the following conditions:

$$(2.5) \qquad (\forall x, y, z \in X) (0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x)),$$

$$(2.6) \qquad (\forall x, y \in X) (0 * (0 * (x * y)) = (0 * y) * (0 * x)),$$

$$(2.7) \qquad (\forall x \in X) (0 * (0 * (0 * x)) = 0 * x).$$

A BCI-algebra L is said to be p-semisimple(see [1]) if 0*(0*x)=x for all $x\in L$.

Every p-semisimple BCI-algebra L satisfies:

$$(2.8) (\forall x, y, z \in L) ((x*z)*(y*z) = x*y).$$

A nonempty subset S of a BCK/BCI-algebra L is called a subalgebra of L if $x*y \in S$ for all $x,y \in S$. A subset A of a BCK/BCI-algebra L is called an ideal of L if it satisfies:

$$(2.9) 0 \in A,$$

$$(2.10) \qquad (\forall x \in L) (x * y \in A, y \in A \Rightarrow x \in A).$$

A subset A of a BCI-algebra L is called a p-ideal of L (see [13]) if it satisfies (2.9) and

$$(2.11) (\forall x, y, z \in L) ((x * z) * (y * z) \in A, y \in A \Rightarrow x \in A).$$

Note that an ideal A of a BCI-algebra L is a p-ideal of L if and only if the following assertion is valid:

$$(2.12) (\forall x, y, z \in L) ((x * z) * (y * z) \in A \implies x * y \in A).$$

We refer the reader to the books $[1,\ 3]$ for further information regarding BCK/BCI-algebras.

3. Subalgebras and Ideals of BCK/BCI-Algebras Based on the Hesitant Intersection

Let L be a set. A hesitant fuzzy set on L (see [6]) is defined in terms of a function \mathcal{H} that when applied to L returns a subset of [0,1], that is, $\mathcal{H}: L \to \mathscr{P}([0,1])$.

Given a hesitant fuzzy set $\mathcal H$ on L, we define Inf $\mathcal H$ and Sup $\mathcal H$, respectively, as follows:

(3.1)
$$\operatorname{Inf}\mathcal{H}(x) = \begin{cases} \text{ minimum of } \mathcal{H}(x) & \text{if } \mathcal{H}(x) \text{ is finite,} \\ \text{infimum of } \mathcal{H}(x) & \text{otherwise,} \end{cases}$$

and

(3.2)
$$\operatorname{Sup}\mathcal{H}(x) = \begin{cases} \text{maximum of } \mathcal{H}(x) & \text{if } \mathcal{H}(x) \text{ is finite,} \\ \text{supremum of } \mathcal{H}(x) & \text{otherwise} \end{cases}$$

for all $x \in L$. It is obvious that Inf \mathcal{H} and Sup \mathcal{H} are fuzzy sets in L. For a hesitant fuzzy set \mathcal{H} on L and $x, y \in L$, we define

$$(3.3) \qquad \mathcal{H}(x) \uplus \mathcal{H}(y) := \{ t \in \mathcal{H}(x) \cup \mathcal{H}(y) \mid t \ge \max\{ \mathrm{Inf}\mathcal{H}(x), \mathrm{Inf}\mathcal{H}(y) \} \}$$

and

$$(3.4) \qquad \mathcal{H}(x) \cap \mathcal{H}(y) := \{ t \in \mathcal{H}(x) \cup \mathcal{H}(y) \mid t \leq \min\{ \operatorname{Sup}\mathcal{H}(x), \operatorname{Sup}\mathcal{H}(y) \} \}.$$

We say that $\mathcal{H}(x) \cup \mathcal{H}(y)$ (resp., $\mathcal{H}(x) \cap \mathcal{H}(y)$) is the hesitant union (resp., hesitant intersection) of $\mathcal{H}(x)$ and $\mathcal{H}(y)$.

Proposition 3.1 For any hesitant fuzzy set \mathcal{H} on L, we have

- (1) $(\forall x \in L) (\mathcal{H}(x) \cup \mathcal{H}(x) = \mathcal{H}(x))$.
- (2) $(\forall x \in L) (\mathcal{H}(x) \cap \mathcal{H}(x) = \mathcal{H}(x))$.
- (3) $(\forall a, b, x, y \in L)$ $(\mathcal{H}(a) \subset \mathcal{H}(x), \mathcal{H}(b) \subset \mathcal{H}(y) \Rightarrow \mathcal{H}(a) \cap \mathcal{H}(b) \subset \mathcal{H}(x) \cap \mathcal{H}(y))$.

 $(4) \ \ (\forall a,b,x,y\in L) \ (\mathcal{H}(a)\subseteq\mathcal{H}(x),\ \mathcal{H}(b)\subseteq\mathcal{H}(y)\ \Rightarrow\ \mathcal{H}(a) \uplus \mathcal{H}(b)\subseteq\mathcal{H}(x) \uplus \mathcal{H}(y))\ .$

Proof. (1) and (2) are straightforward.

(3) Let $a, b, x, y \in L$ be such that $\mathcal{H}(a) \subseteq \mathcal{H}(x)$ and $\mathcal{H}(b) \subseteq \mathcal{H}(y)$. Then $\operatorname{Sup}\mathcal{H}(a) \leq \operatorname{Sup}\mathcal{H}(x)$ and $\operatorname{Sup}\mathcal{H}(b) \leq \operatorname{Sup}\mathcal{H}(y)$. If $t \in \mathcal{H}(a) \cap \mathcal{H}(b)$, then

$$t \in \mathcal{H}(a) \cup \mathcal{H}(b) \subseteq \mathcal{H}(x) \cup \mathcal{H}(y)$$

and $t \leq \min\{\operatorname{Sup}\mathcal{H}(a), \operatorname{Sup}\mathcal{H}(b)\} \leq \min\{\operatorname{Sup}\mathcal{H}(x), \operatorname{Sup}\mathcal{H}(y)\}.$ Hence $t \in \mathcal{H}(x) \cap \mathcal{H}(y)$, and so $\mathcal{H}(a) \cap \mathcal{H}(b) \subseteq \mathcal{H}(x) \cap \mathcal{H}(y)$.

(4) Let $a, b, x, y \in L$ be such that $\mathcal{H}(a) \subseteq \mathcal{H}(x)$ and $\mathcal{H}(b) \subseteq \mathcal{H}(y)$. Then $\operatorname{Inf}\mathcal{H}(a) \geq \operatorname{Inf}\mathcal{H}(x)$ and $\operatorname{Inf}\mathcal{H}(b) \geq \operatorname{Inf}\mathcal{H}(y)$. If $t \in \mathcal{H}(a) \cup \mathcal{H}(b)$, then

$$t \in \mathcal{H}(a) \cup \mathcal{H}(b) \subseteq \mathcal{H}(x) \cup \mathcal{H}(y)$$

and $t \ge \max\{\operatorname{Inf}\mathcal{H}(a), \operatorname{Inf}\mathcal{H}(b)\} \ge \max\{\operatorname{Inf}\mathcal{H}(x), \operatorname{Inf}\mathcal{H}(y)\}.$ Hence $t \in \mathcal{H}(x) \cup \mathcal{H}(y)$, and so $\mathcal{H}(a) \cup \mathcal{H}(b) \subseteq \mathcal{H}(x) \cup \mathcal{H}(y).$

Definition 3.2 A hesitant fuzzy set on a BCK/BCI-algebra L is called a *hesitant fuzzy subalgebra* of L based on the intersection (\cap) (briefly, \cap -hesitant fuzzy subalgebra of L) if it satisfies:

$$(3.5) \qquad (\forall x, y \in L) \left(\mathcal{H}(x * y) \supseteq \mathcal{H}(x) \cap \mathcal{H}(y) \right).$$

Definition 3.3 A hesitant fuzzy set on a BCK/BCI-algebra L is called a *hesitant fuzzy subalgebra* of L based on the hesitant intersection (\Cap) (briefly, \Cap -hesitant fuzzy subalgebra of L) if it satisfies:

$$(3.6) \qquad (\forall x, y \in L) \left(\mathcal{H}(x * y) \supseteq \mathcal{H}(x) \cap \mathcal{H}(y) \right).$$

Example 3.4 Let $L = \{0, 1, 2, 3\}$ be a BCK-algebra (see [3]) with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
$\frac{1}{2}$	2	2	0	0
3	3	2	1	0

(1) Define a hesitant fuzzy set \mathcal{H} on L as follows:

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \left\{ \begin{array}{ll} [0.3,0.8] & \text{if } x = 0, \\ [0.3,0.7] & \text{if } x = 1, \\ [0.3,0.5] & \text{if } x \in \{2,3\}. \end{array} \right.$$

It is easy to check that \mathcal{H} is a \mathbb{A} -hesitant fuzzy subalgebra of L.

(2) Define a hesitant fuzzy set \mathcal{G} on L as follows:

$$\mathcal{G}: L \to \mathscr{P}([0,1]), \quad x \mapsto \left\{ \begin{array}{ll} [0.2,0.8] & \text{if } x = 0, \\ [0.2,0.7] & \text{if } x = 1, \\ [0.2,0.4] & \text{if } x = 2, \\ [0.2,0.6] & \text{if } x = 3. \end{array} \right.$$

Then \mathfrak{G} is not a \mathbb{G} -hesitant fuzzy subalgebra of L since

$$\begin{split} \mathfrak{G}(3) & \cap \mathfrak{G}(1) = \{t \in \mathfrak{G}(3) \cup \mathfrak{G}(1) \mid t \leq \min\{\operatorname{Sup}\mathfrak{G}(3), \operatorname{Sup}\mathfrak{G}(1)\} \\ &= \{t \in [0.2, 0.7] \mid t \leq \min\{0.6, 0.7\}\} \\ &= [0.2, 0.6] \not\subseteq [0.2, 0.4] = \mathfrak{G}(2) = \mathfrak{G}(3*1). \end{split}$$

It is clear that every \bigcirc -hesitant fuzzy subalgebra is a \bigcirc -hesitant fuzzy subalgebra, but the converse is not true in general as seen in the following example.

Example 3.5 Let $L = \{0, a, b, c, d\}$ be a BCI-algebra (see [1]) with the following Cayley table:

Define a hesitant fuzzy set $\mathcal H$ on L as follows:

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \left\{ \begin{array}{ll} [0,0.9] & \text{if } x = 0, \\ [0.2,0.7] & \text{if } x = a, \\ (0.2,0.3] & \text{if } x = b, \\ \{0.4,0.5,0.6\} & \text{if } x = c, \\ [0.6,0.7] & \text{if } x = d. \end{array} \right.$$

It is routine to check that \mathcal{H} is a \cap -hesitant fuzzy subalgebra of L. Note that

$$\begin{split} \mathcal{H}(b) & \cap \mathcal{H}(d) = \{x \in \mathcal{H}(b) \cup \mathcal{H}(d) \mid x \leq \min\{\text{Sup}\mathcal{H}(b), \text{Sup}\mathcal{H}(d)\} \\ &= \{x \in (0.2, 0.3] \cup [0.6, 0.7] \mid x \leq \min\{0.3, 0.7\}\} \\ &= (0.2, 0.3], \end{split}$$

and so $\mathcal{H}(b*d) = \mathcal{H}(c) = \{0.4, 0.5, 0.6\} \not\supseteq (0.2, 0.3] = \mathcal{H}(b) \cap \mathcal{H}(d)$. Therefore \mathcal{H} is not a \cap -hesitant fuzzy subalgebra of L.

For any hesitant fuzzy set \mathcal{H} on a BCK/BCI-algebra L and $\varepsilon \in \mathscr{P}([0,1])$, we consider the set

$$\mathcal{H}_{\varepsilon} := \{ x \in L \mid \varepsilon \subseteq \mathcal{H}(x) \}$$

which is called the hesitant ε -level set on L.

Theorem 3.6 If \mathcal{H} is a \mathbb{R} -hesitant fuzzy subalgebra of a BCK/BCI-algebra L, then the hesitant ε -level set $\mathcal{H}_{\varepsilon}$ on L is a subalgebra of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$.

Proof. Assume that \mathcal{H} is a \mathbb{G} -hesitant fuzzy subalgebra of a BCK/BCI-algebra L and let $\varepsilon \in \mathscr{P}([0,1])$ be such that $\mathcal{H}_{\varepsilon} \neq \emptyset$. If $x,y \in \mathcal{H}_{\varepsilon}$, then $\varepsilon \subseteq \mathcal{H}(x)$ and $\varepsilon \subseteq \mathcal{H}(y)$. It follows from (3.6) and Proposition 3.1(3) that

$$(3.7) \mathcal{H}(x*y) \supseteq \mathcal{H}(x) \cap \mathcal{H}(y) \supseteq \varepsilon$$

and that $x * y \in \mathcal{H}_{\varepsilon}$. Therefore $\mathcal{H}_{\varepsilon}$ is a subalgebra of L.

The converse of Theorem 3.6 is not true in general as seen in the following example.

Example 3.7 Let $L = \{0, 1, 2, a, b\}$ be a BCI-algebra (see [1]) with the following Cayley table:

Define a hesitant fuzzy set \mathcal{H} on L as follows:

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \left\{ \begin{array}{ll} [0.3,0.8) & \text{if } x = 0, \\ (0.3,0.5] & \text{if } x = 1, \\ [0.4,0.7] & \text{if } x = 2, \\ (0.4,0.6) & \text{if } x = a, \\ (0.4,0.5] & \text{if } x = b. \end{array} \right.$$

Then we have

$$\mathcal{H}_{\varepsilon} = \left\{ \begin{array}{ll} \{0\} & \text{if } \varepsilon \subseteq [0.3, 0.8), \, \varepsilon \not\subseteq (0.3, 0.5) \text{ and } \varepsilon \not\subseteq [0.4, 0.7], \\ \{0, 2\} & \text{if } \varepsilon \subseteq [0.4, 0.7] \text{ and } \varepsilon \not\subseteq (0.4, 0.6), \\ \{0, 2, a\} & \text{if } \varepsilon \subseteq (0.4, 0.6) \text{ and } \varepsilon \not\subseteq (0.4, 0.5], \\ \{0, 1\} & \text{if } \varepsilon \subseteq (0.3, 0.5) \, \varepsilon \not\subseteq (0.4, 0.5], \\ L & \text{if } \varepsilon \subseteq (0.4, 0.5], \\ \emptyset & \text{otherwise,} \end{array} \right.$$

and so $\mathcal{H}_{\varepsilon}$ is a subalgebra of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$. Since

$$\begin{split} \mathcal{H}(2) & \cap \mathcal{H}(b) = \{t \in \mathcal{H}(2) \cup \mathcal{H}(b) \mid t \leq \min\{\text{Sup}\mathcal{H}(2), \text{Sup}\mathcal{H}(b)\} \\ &= \{t \in [0.4, 0.7] \mid t \leq \min\{0.7, 0.5\}\} \\ &= [0.4, 0.5] \nsubseteq (0.4, 0.6) = \mathcal{H}(a) = \mathcal{H}(2 * b), \end{split}$$

 \mathcal{H} is not a \bigcirc -hesitant fuzzy subalgebra of L.

Theorem 3.8 Let $\mathcal H$ be a hesitant fuzzy set on a BCK/BCI-algebra L such that

$$(3.8) \qquad (\forall x, y \in L) (\mathcal{H}(x) \cap \mathcal{H}(y) = \mathcal{H}(x) \cap \mathcal{H}(y)).$$

If the hesitant ε -level set $\mathcal{H}_{\varepsilon}$ on L is a subalgebra of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$, then \mathcal{H} is a \mathbb{G} -hesitant fuzzy subalgebra of L.

Proof. Assume that the set $\mathcal{H}_{\varepsilon} := \{x \in L \mid \varepsilon \subseteq \mathcal{H}(x)\}\$ is a subalgebra of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$. For any $x,y \in L$, let $\mathcal{H}(x) = \varepsilon_x$ and $\mathcal{H}(y) = \varepsilon_y$. Take $\varepsilon = \varepsilon_x \cap \varepsilon_y$. Then $x,y \in \mathcal{H}_{\varepsilon}$, and so $x * y \in \mathcal{H}_{\varepsilon}$. It follows from (3.8) that

$$\mathcal{H}(x * y) \supseteq \varepsilon = \varepsilon_x \cap \varepsilon_y = \varepsilon_x \cap \varepsilon_y = \mathcal{H}(x) \cap \mathcal{H}(y).$$

Therefore \mathcal{H} is a \bigcirc -hesitant fuzzy subalgebra of L.

Definition 3.9 A hesitant fuzzy set on a BCK/BCI-algebra L is called a *hesitant fuzzy ideal* of L based on the intersection (\cap) (briefly, \cap -hesitant fuzzy ideal of L) if it satisfies:

$$(3.9) \qquad (\forall x \in L) (\mathcal{H}(x) \subseteq \mathcal{H}(0)),$$

$$(3.10) \qquad (\forall x, y \in L) (\mathcal{H}(x * y) \cap \mathcal{H}(y) \subseteq \mathcal{H}(x)).$$

Definition 3.10 A hesitant fuzzy set on a BCK/BCI-algebra L is called a *hesitant fuzzy ideal* of L based on the hesitant intersection (\mathbb{n}) (briefly, \mathbb{n} -hesitant fuzzy ideal of L) if it satisfies the condition (3.9) and

$$(3.11) \qquad (\forall x, y \in L) (\mathcal{H}(x * y) \cap \mathcal{H}(y) \subseteq \mathcal{H}(x)).$$

Example 3.11 Let (Z, +, 0) be an additive group of integers. Note that (Z, -, 0) is the adjoint BCI-algebra of (Z, +, 0). For any BCI-algebra (Y, *, 0), let $L := Y \times Z$. Then $(L, \otimes, (0, 0))$ is a BCI-algebra (see [1]) in which the operation \otimes is given by

$$(\forall (x,m), (y,n) \in L) ((x,m) \otimes (y,n) = (x * y, m - n)).$$

For a subset $A := Y \times N_0$ of L where N_0 is the set of nonnegative integers, let \mathcal{H} be a hesitant fuzzy set on L defined by

$$\mathcal{H}:L\to \mathscr{P}([0,1]), \quad x\mapsto \left\{ \begin{array}{ll} [0.3,0.9) & \text{if } x\in A,\\ [0.3,0.6] & \text{otherwise}. \end{array} \right.$$

It is routine to verify that \mathcal{H} is a \mathbb{A} -hesitant fuzzy ideal of L.

It is clear that every \bigcirc -hesitant fuzzy ideal is a \bigcirc -hesitant fuzzy ideal, but the converse is not true in general as seen in the following example.

Example 3.12 Let $L = \{0, e, a, b, c\}$ be a BCI-algebra (see [1]) with the following Cayley table:

Define a hesitant fuzzy set \mathcal{H} on L as follows:

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \begin{cases} [0,1) & \text{if } x = 0, \\ [0.2,0.7] & \text{if } x = e, \\ (0.2,0.3] & \text{if } x = a, \\ \{0.4,0.5\} & \text{if } x = b, \\ [0.6,0.7) & \text{if } x = c. \end{cases}$$

Then \mathcal{H} is a \cap -hesitant fuzzy subalgebra of L. Note that

$$\begin{split} \mathcal{H}(a*c) & \cap \mathcal{H}(c) = \mathcal{H}(b) \cap \mathcal{H}(c) \\ &= \{t \in \{0.4, 0.5\} \cup [0.6, 0.7] \mid t \leq \min\{0.5, 0.7\}\} \\ &= \{0.4, 0.5\} \not\subseteq (0.2, 0.3) = \mathcal{H}(a). \end{split}$$

Hence \mathcal{H} is not a \bigcirc -hesitant fuzzy ideal of L.

Proposition 3.13 Every \cap -hesitant fuzzy ideal $\mathcal H$ of a BCI-algebra L satisfies the following assertion:

$$(3.12) \qquad (\forall x \in L) \left(\mathcal{H}(x) \subseteq \mathcal{H}(0 * (0 * x)) \right).$$

Proof. For every $x \in L$, we have

$$\mathcal{H}(x) = \mathcal{H}(x) \cap \mathcal{H}(x) \subseteq \mathcal{H}(0) \cap \mathcal{H}(x)$$
$$= \mathcal{H}((0 * (0 * x)) * x) \cap \mathcal{H}(x)$$
$$\subseteq \mathcal{H}(0 * (0 * x))$$

by Proposition 3.1, (III), (2.3) and (3.11).

Theorem 3.14 If \mathcal{H} is a \cap -hesitant fuzzy ideal of a BCK/BCI-algebra L, then the hesitant ε -level set $\mathcal{H}_{\varepsilon}$ on L is an ideal of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$. Proof. Suppose that \mathcal{H} is a \cap -hesitant fuzzy ideal of a BCK/BCI-algebra L. Let

П

 $x, y \in L$ and $\varepsilon \in \mathscr{P}([0,1])$ be such that $x * y \in \mathcal{H}_{\varepsilon}$ and $y \in \mathcal{H}_{\varepsilon}$. Then $\varepsilon \subseteq \mathcal{H}(x * y)$ and $\varepsilon \subseteq \mathcal{H}(y)$. It follows from (3.9), (3.11) and Proposition 3.1(3) that

$$\mathcal{H}(0) \supseteq \mathcal{H}(x) \supseteq \mathcal{H}(x * y) \cap \mathcal{H}(y) \supseteq \varepsilon$$
.

Hence $0 \in \mathcal{H}_{\varepsilon}$ and $x \in \mathcal{H}_{\varepsilon}$. Therefore $\mathcal{H}_{\varepsilon}$ is an ideal of L.

The following example shows that the converse of Theorem 3.14 is not true in general.

Example 3.15 Consider the BCI-algebra L in Example 3.11. For a subset $A := Y \times N_0$ of L where N_0 is the set of nonnegative integers, let \mathcal{H} be a hesitant fuzzy set on L defined by

$$\mathcal{H}:L\to \mathscr{P}([0,1]), \quad x\mapsto \left\{ \begin{array}{ll} [0.3,0.9) & \text{if } x\in A,\\ (0.4,0.6] & \text{otherwise}. \end{array} \right.$$

Then $\mathcal{H}_{\varepsilon}$ is an ideal of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$. For any $a \in Y$, we have

$$\begin{split} &\mathcal{H}((a,-3)\otimes(a,3)) \cap \mathcal{H}(a,3) = \mathcal{H}(0,-6) \cap \mathcal{H}(a,3) \\ &= \{t \in \mathcal{H}(0,-6) \cup \mathcal{H}(a,3) \mid t \leq \min\{\mathrm{Sup}\mathcal{H}(0,-6),\mathrm{Sup}\mathcal{H}(a,3)\}\} \\ &= \{t \in [0.3,0.9) \mid t \leq \min\{0.6,0.9\}\} \\ &= [0.3,0.6] \not\subseteq (0.4,0.6] = \mathcal{H}(a,-3). \end{split}$$

Hence \mathcal{H} is not a \bigcirc -hesitant fuzzy ideal of L.

We provide a condition for the converse of Theorem 3.14 to be true.

Theorem 3.16 Let \mathcal{H} be a hesitant fuzzy set on a BCK/BCI-algebra L satisfying the condition (3.8). If the hesitant ε -level set $\mathcal{H}_{\varepsilon}$ on L is an ideal of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$, then \mathcal{H} is a \mathbb{n} -hesitant fuzzy ideal of L.

Proof. For any $x \in L$, let $\mathcal{H}(x) = \varepsilon_x$. Then $x \in \mathcal{H}_{\varepsilon_x}$, and so $\mathcal{H}_{\varepsilon_x}$ is an ideal of L by assumption. Thus $0 \in \mathcal{H}_{\varepsilon_x}$, and hence $\mathcal{H}(0) \supseteq \varepsilon_x = \mathcal{H}(x)$. For any $x, y \in L$, let $\mathcal{H}(x * y) = \varepsilon_{x*y}$ and $\mathcal{H}(y) = \varepsilon_y$. Taking $\varepsilon = \varepsilon_{x*y} \cap \varepsilon_y$ implies that $x * y \in \mathcal{H}_{\varepsilon}$ and $y \in \mathcal{H}_{\varepsilon}$. Hence $x \in \mathcal{H}_{\varepsilon}$, and it follows from the condition (3.8) that

$$\mathcal{H}(x) \supseteq \varepsilon = \varepsilon_{x*y} \cap \varepsilon_y = \varepsilon_{x*y} \cap \varepsilon_y = \mathcal{H}(x*y) \cap \mathcal{H}(y).$$

Therefore \mathcal{H} is a \bigcirc -hesitant fuzzy ideal of L.

Theorem 3.17 Let ε_1 and ε_2 be subintervals of [0,1] such that

- (1) $\varepsilon_2 \subsetneq \varepsilon_1$, $\operatorname{Inf} \varepsilon_1 = \operatorname{Inf} \varepsilon_2$ and $\operatorname{Sup} \varepsilon_2 \in \varepsilon_2$,
- (2) $\operatorname{Inf} \varepsilon_1 \in \varepsilon_1 \ and \operatorname{Inf} \varepsilon_2 \in \varepsilon_2 \ (or, \operatorname{Inf} \varepsilon_1 \notin \varepsilon_1 \ and \operatorname{Inf} \varepsilon_2 \notin \varepsilon_2).$

Define a hesitant fuzzy set \mathcal{H} on a BCK/BCI-algebra L as follows:

$$\mathcal{H}:L\to \mathscr{P}([0,1]), \quad x\mapsto \left\{ \begin{array}{ll} \varepsilon_1 & \text{if } x\in A,\\ \varepsilon_2 & \text{otherwise,} \end{array} \right.$$

where A is a nonempty proper subset of L. Then $\mathcal H$ is a \cap -hesitant fuzzy ideal (resp., subalgebra) of L if and only if A is an ideal (resp., subalgebra) of L. Proof. Note that

$$\mathcal{H}_{\varepsilon} = \left\{ \begin{array}{ll} A & \text{if } \varepsilon \subseteq \varepsilon_1 \text{ and } \varepsilon \nsubseteq \varepsilon_2, \\ L & \text{if } \varepsilon \subseteq \varepsilon_2, \\ \emptyset & \text{otherwise.} \end{array} \right.$$

If \mathcal{H} is a \mathbb{G} -hesitant fuzzy ideal of L, then $\mathcal{H}_{\varepsilon}$ is an ideal of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$ by Theorem 3.14. Hence A is an ideal of L.

Conversely, suppose that A is an ideal of L. Then $\mathcal{H}_{\varepsilon}$ is an ideal of L for all $\varepsilon \in \mathscr{P}([0,1])$ with $\mathcal{H}_{\varepsilon} \neq \emptyset$. Let $x,y \in L$. If $x,y \in A$, then

$$\mathcal{H}(x) \cap \mathcal{H}(y) = \{ t \in \mathcal{H}(x) \cup \mathcal{H}(y) \mid t \leq \min\{ \text{Sup}\mathcal{H}(x), \text{Sup}\mathcal{H}(y) \} \}$$
$$= \varepsilon_1 = \mathcal{H}(x) \cap \mathcal{H}(y).$$

If $x, y \in L \setminus A$, then

$$\mathcal{H}(x) \cap \mathcal{H}(y) = \{ t \in \mathcal{H}(x) \cup \mathcal{H}(y) \mid t \leq \min\{ \text{Sup}\mathcal{H}(x), \text{Sup}\mathcal{H}(y) \} \}$$
$$= \varepsilon_2 = \mathcal{H}(x) \cap \mathcal{H}(y).$$

If $x \in A$ and $y \in L \setminus A$, then

$$\begin{split} \mathcal{H}(x) & \cap \mathcal{H}(y) = \{t \in \mathcal{H}(x) \cup \mathcal{H}(y) \mid t \leq \min\{\mathrm{Sup}\mathcal{H}(x), \mathrm{Sup}\mathcal{H}(y)\}\} \\ &= \{t \in \varepsilon_1 \mid t \leq \min\{\mathrm{Sup}\varepsilon_1, \mathrm{Sup}\varepsilon_2\}\} \\ &= \{t \in \varepsilon_1 \mid t \leq \mathrm{Sup}\varepsilon_2\} \\ &= \varepsilon_2 = \mathcal{H}(x) \cap \mathcal{H}(y). \end{split}$$

Similarly, if $x \in L \setminus A$ and $y \in A$, then $\mathcal{H}(x) \cap \mathcal{H}(y) = \mathcal{H}(x) \cap \mathcal{H}(y)$. Thus \mathcal{H} satisfies the condition (3.8), and therefore \mathcal{H} is a \mathbb{R} -hesitant fuzzy ideal of L by Theorem 3.16. By the similar way, we can prove that \mathcal{H} is a \mathbb{R} -hesitant fuzzy subalgebra of L if and only if A is a subalgebra of L.

Proposition 3.18 For every \cap -hesitant fuzzy ideal $\mathcal H$ of a BCK/BCI-algebra L, the following assertions are valid.

- (1) $(\forall x, y \in L) (x \le y \Rightarrow \mathcal{H}(x) \supseteq \mathcal{H}(y))$,
- (2) $(\forall x, y, z \in L) (x * y \le z \Rightarrow \mathcal{H}(x) \supseteq \mathcal{H}(y) \cap \mathcal{H}(z))$,

Proof. (1) Assume that $x \leq y$ for all $x, y \in L$. Then x * y = 0, which implies from (3.9), Proposition 3.1 and (3.11) that

$$\mathcal{H}(y) = \mathcal{H}(y) \cap \mathcal{H}(y) \subseteq \mathcal{H}(0) \cap \mathcal{H}(y) = \mathcal{H}(x * y) \cap \mathcal{H}(y) \subseteq \mathcal{H}(x).$$

(2) Let $x, y, z \in L$ be such that $x * y \le z$. Then (x * y) * z = 0, and so

$$\mathcal{H}(z) = \mathcal{H}(z) \cap \mathcal{H}(z) \subseteq \mathcal{H}(0) \cap \mathcal{H}(z) = \mathcal{H}((x * y) * z) \cap \mathcal{H}(z) \subseteq \mathcal{H}(x * y)$$

by (3.9), Proposition 3.1 and (3.11). It follows from Proposition 3.1 and (3.11) that

$$\mathcal{H}(y) \cap \mathcal{H}(z) \subseteq \mathcal{H}(x * y) \cap \mathcal{H}(y) \subseteq \mathcal{H}(x).$$

Proposition 3.19 For every \cap -hesitant fuzzy ideal \mathcal{H} of a BCK/BCI-algebra L, the following assertions are equivalent.

- (1) $(\forall x, y \in L) (\mathcal{H}((x * y) * y) \subseteq \mathcal{H}(x * y))$,
- (2) $(\forall x, y, z \in L) (\mathcal{H}((x * y) * z) \subseteq \mathcal{H}((x * z) * (y * z))).$

Proof. Suppose that (1) is true and let $x, y, z \in L$. Note that

$$((x*(y*z))*z)*z = ((x*z)*(y*z))*z \le (x*y)*z$$

by (2.3),(2.4) and (2.2). It follows from Proposition 3.18(1), (1) and (2.3) that

$$\mathcal{H}((x*y)*z) \subseteq \mathcal{H}(((x*(y*z))*z)*z)$$

$$\subseteq \mathcal{H}((x*(y*z))*z)$$

$$= \mathcal{H}((x*z)*(y*z)),$$

which shows that (2) is valid.

Now, assume that (2) holds and take z := y in (2). Then

$$\mathcal{H}((x*y)*y) \subseteq \mathcal{H}((x*y)*(y*y)) = \mathcal{H}((x*y)*0) = \mathcal{H}(x*y)$$

by using (III) and (2.1). Thus (1) is valid.

We consider relations between a $\Cap-hesitant$ fuzzy subalgebra and a $\Cap-hesitant$ fuzzy ideal.

Theorem 3.20 In a BCK-algebra, every \cap -hesitant fuzzy ideal is a \cap -hesitant fuzzy subalgebra.

Proof. Let \mathcal{H} be a \mathbb{G} -hesitant fuzzy ideal of a BCK-algebra L. Using (3.11), (2.3), (III), (V), (3.9) and Proposition 3.1, we have

$$\begin{split} \mathcal{H}(x*y) &\supseteq \mathcal{H}((x*y)*x) \cap \mathcal{H}(x) \\ &= \mathcal{H}((x*x)*y) \cap \mathcal{H}(x) \\ &= \mathcal{H}(0*y) \cap \mathcal{H}(x) \\ &= \mathcal{H}(0) \cap \mathcal{H}(x) \\ &\supseteq \mathcal{H}(x) \cap \mathcal{H}(y) \end{split}$$

for all $x,y\in L.$ Hence $\mathcal H$ is a \Cap -hesitant fuzzy subalgebra of L.

The converse of Theorem 3.20 is not true in general. In fact, consider a BCK-algebra $L = \{0, 1, 2\}$ with the following Cayley table:

Let \mathcal{H} be a hesitant fuzzy set on L defined by

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \left\{ \begin{array}{ll} [0.3, 0.8) & \text{if } x = 0, \\ [0.3, 0.6] & \text{if } x = 1, \\ [0.3, 0.7] & \text{if } x = 2. \end{array} \right.$$

Then $\mathcal H$ is a $\mathbb A$ -hesitant fuzzy subalgebra of L, but it is not a $\mathbb A$ -hesitant fuzzy ideal of L since

$$\begin{split} \mathcal{H}(1*2) & \cap \mathcal{H}(2) = \mathcal{H}(0) \cap \mathcal{H}(2) \\ &= \{ t \in \mathcal{H}(0) \cup \mathcal{H}(2) \mid t \leq \min\{ \mathrm{Sup}\mathcal{H}(0), \mathrm{Sup}\mathcal{H}(2) \} \\ &= \{ t \in [0.3, 0.8) \mid t \leq \min\{ 0.8, 0.7 \} \\ &= [0.3, 0.7] \not\subseteq [0.3, 0.6] = \mathcal{H}(1). \end{split}$$

In a BCI-algebra, any \cap -hesitant fuzzy ideal may not be a \cap -hesitant fuzzy subalgebra. In fact, the \cap -hesitant fuzzy ideal $\mathcal H$ of L in Example 3.11 is not a \cap -hesitant fuzzy subalgebra of L since

$$\begin{split} \mathcal{H}(a,0) & \cap \mathcal{H}(a,2) = \{t \in \mathcal{H}(a,0) \cup \mathcal{H}(a,2) \mid t \leq \{ \mathrm{Sup}\mathcal{H}(a,0), \mathrm{Sup}\mathcal{H}(a,2) \} \} \\ &= \{t \in [0.3,0.9) \mid t \leq 0.9 \} \\ &= [0.3,0.9) \nsubseteq [0.3,0.6] \\ &= \mathcal{H}((a,0) \otimes (a,2)) \end{split}$$

for all $a \in Y$.

Definition 3.21 A hesitant fuzzy set \mathcal{H} on a BCI-algebra L is called a hesitant fuzzy p-ideal of L based on the hesitant intersection (\square) (briefly, \square -hesitant fuzzy p-ideal of L) if it satisfies (3.9) and

$$(3.13) \qquad (\forall x, y, z \in L) \left(\mathcal{H}((x * z) * (y * z)) \cap \mathcal{H}(y) \subseteq \mathcal{H}(x) \right).$$

Example 3.22 Let $L = \{0, a, b, c\}$ be a BCI-algebra (see [1]) with the following Cayley table.

Define a hesitant fuzzy set \mathcal{H} on L as follows:

$$\mathcal{H}:L\to \mathscr{P}([0,1]), \quad x\mapsto \left\{ \begin{array}{ll} (0.4,0.7) & \text{if } x\in\{0,b\}\\ (0.4,0.5] & \text{otherwise,} \end{array} \right.$$

It is routine to verify that \mathcal{H} is a \bigcap -hesitant fuzzy p-ideal of L.

Theorem 3.23 Let L be a BCI-algebra. Then every \cap -hesitant fuzzy p-ideal of L is a \cap -hesitant fuzzy ideal of L.

Proof. Let \mathcal{H} be a \mathbb{G} -hesitant fuzzy p-ideal of L. Since x * 0 = x for all $x \in X$, it follows from taking z := 0 in (3.13) that

$$\mathcal{H}(x) \supseteq \mathcal{H}((x*0)*(y*0)) \cap \mathcal{H}(y) = \mathcal{H}(x*y) \cap \mathcal{H}(y)$$

for all $x, y \in L$. Therefore \mathcal{H} is a \cap -hesitant fuzzy ideal of L.

The following example shows that the converse of Theorem 3.23 is not true in general.

Example 3.24 Consider a BCI-algebra $L = \{0, 1, a, b, c\}$ with the following Cayley table (see [1]).

Define a hesitant fuzzy set $\mathcal H$ on L as follows:

$$\mathcal{H}: L \to \mathscr{P}([0,1]), \quad x \mapsto \begin{cases} (0.2, 0.9) & \text{if } x = 0, \\ (0.2, 0.7] & \text{if } x = 1, \\ (0.2, 0.5] & \text{otherwise} \end{cases}$$

Then $\mathcal H$ is a $\mathbb A$ -hesitant fuzzy ideal of L. But it is not a $\mathbb A$ -hesitant fuzzy p-ideal of L since

$$\mathcal{H}((1*a)*(0*a)) \cap \mathcal{H}(0) = \mathcal{H}(c*c) \cap \mathcal{H}(0)$$

= $\mathcal{H}(0) = (0, 2, 0.9) \not\subseteq (0.2, 0.7] = \mathcal{H}(1).$

Proposition 3.25 Every \cap -hesitant fuzzy p-ideal \mathcal{H} of a BCI-algebra L satisfies the following assertion:

$$(3.14) \qquad (\forall x \in L) \left(\mathcal{H}(0 * (0 * x)) \subseteq \mathcal{H}(x) \right).$$

Proof. Let \mathcal{H} be a \mathbb{R} -hesitant fuzzy p-ideal of L. If we put z := x and y := 0 in (3.13), then

$$\mathcal{H}(x) \supseteq \mathcal{H}((x*x)*(0*x)) \cap \mathcal{H}(0) = \mathcal{H}(0*(0*x)) \cap \mathcal{H}(0) \supseteq \mathcal{H}(0*(0*x))$$

for all $x \in L$ by (III), (3.9) and Proposition 3.1.

Proposition 3.26 Every \cap -hesitant fuzzy p-ideal \mathcal{H} of a BCI-algebra L satisfies:

$$(3.15) \qquad (\forall x, y, z \in L) \left(\mathcal{H}(x * y) \subseteq \mathcal{H}((x * z) * (y * z)) \right).$$

Proof. Let \mathcal{H} be a \mathbb{R} -hesitant fuzzy p-ideal of L. Then it is a \mathbb{R} -hesitant fuzzy ideal of L by Theorem 3.23. Using (3.11), (2.4) and Proposition 3.1, we have

$$\mathcal{H}((x*z)*(y*z)) \supseteq \mathcal{H}(((x*z)*(y*z))*(x*y)) \cap \mathcal{H}(x*y)$$
$$= \mathcal{H}(0) \cap \mathcal{H}(x*y) \supset \mathcal{H}(x*y)$$

for all $x, y, z \in L$.

We provide conditions for a \cap -hesitant fuzzy ideal to be a \cap -hesitant fuzzy p-ideal.

Theorem 3.27 Let \mathcal{H} be a \bigcap -hesitant fuzzy ideal of L such that

$$(3.16) \qquad (\forall x, y, z \in L) \left(\mathcal{H}(x * y) \supseteq \mathcal{H}((x * z) * (y * z)) \right).$$

Then \mathcal{H} is a \bigcap -hesitant fuzzy p-ideal of L.

Proof. If the condition (3.16) is valid, then

$$\mathcal{H}(x) \supseteq \mathcal{H}(x * y) \cap \mathcal{H}(y) \supseteq \mathcal{H}((x * z) * (y * z)) \cap \mathcal{H}(y)$$

for all $x,y,z\in L$ by (3.11) and Proposition 3.1. Therefore $\mathcal H$ is a $\mathbb G$ -hesitant fuzzy p-ideal of L. \square

Theorem 3.28 If a \cap -hesitant fuzzy ideal \mathcal{H} of L satisfies the condition (3.14), then it is a \cap -hesitant fuzzy p-ideal of L.

Proof. Let $x, y, z \in L$. Using Proposition 3.13, (2.5), (2.6) and (3.14), we have

$$\mathcal{H}((x*z)*(y*z)) \subseteq \mathcal{H}(0*(0*((x*z)*(y*z))))$$

$$= \mathcal{H}((0*y)*(0*x))$$

$$= \mathcal{H}(0*(0*(x*y)))$$

$$\subseteq \mathcal{H}(x*y).$$

It follows from Theorem 3.27 that $\mathcal H$ is a \cap -hesitant fuzzy p-ideal of L. \square

Theorem 3.29 In a p-semisimple BCI-algebra, every \cap -hesitant fuzzy ideal is a \cap -hesitant fuzzy p-ideal.

Proof. Let \mathcal{H} be a \mathbb{R} -hesitant fuzzy ideal of a p-semisimple BCI-algebra L. Using (3.11) and (2.8), we have

$$\mathcal{H}(x) \supseteq \mathcal{H}(x * y) \cap \mathcal{H}(y) = \mathcal{H}((x * z) * (y * z)) \cap \mathcal{H}(y)$$

for all $x, y, z \in L$. Therefore \mathcal{H} is a \bigcap -hesitant fuzzy p-ideal of L.

Theorem 3.30 (Extension property for \mathbb{G} -hesitant fuzzy p-ideals) Let \mathcal{H} and \mathcal{G} be \mathbb{G} -hesitant fuzzy ideals of a BCI-algebra L such that $\mathcal{H}(0) = \mathcal{G}(0)$ and $\mathcal{H}(x) \subseteq \mathcal{G}(x)$ for all $x \in L$. If \mathcal{H} is a \mathbb{G} -hesitant fuzzy p-ideal of L, then so is \mathcal{G} .

Proof. Assume that \mathcal{H} is a \mathbb{R} -hesitant fuzzy p-ideal of X. Using (2.6), (2.7) and (III), we have 0*(0*(x*(0*(0*x))))=0 for all $x\in X$. It follows from hypothesis and (3.14) that

$$\mathcal{G}(x * (0 * (0 * x))) \supseteq \mathcal{H}(x * (0 * (0 * x)))
\supseteq \mathcal{H}(0 * (0 * (x * (0 * (0 * x)))))
= \mathcal{H}(0) = \mathcal{G}(0),$$

and that

$$\begin{split} \mathfrak{G}(x) &\supseteq \mathfrak{G}(x * (0 * (0 * x))) \cap \mathfrak{G}(0 * (0 * x)) \\ &\supseteq \mathfrak{G}(0) \cap \mathfrak{G}(0 * (0 * x)) \\ &\supseteq \mathfrak{G}(0 * (0 * x)) \cap \mathfrak{G}(0 * (0 * x)) \\ &= \mathfrak{G}(0 * (0 * x)) \end{split}$$

by (3.11), (3.9) and Proposition 3.1. Therefore \mathcal{G} is a \mathbb{G} -hesitant fuzzy p-ideal of X by Theorem 3.28.

Acknowledgements. The author wishs to thank the anonymous reviewers for their valuable suggestions.

References

- $[1]\,$ Y. Huang, BCI-algebra, Science Press, Beijing 2006.
- [2] Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Math. J., **36(4)**(2014), 813–830.
- [3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul 1994.
- [4] G. Muhiuddin, Hesitant fuzzy filters and hesitant fuzzy G-filters in residuated lattices,
 J. Comput. Anal. Appl., 21(2)(2016), 394-404.
- [5] Rosa M. Rodriguez, Luis Martinez and Francisco Herrera, *Hesitant fuzzy linguistic term sets for decision making*, IEEE Trans. Fuzzy Syst., **20(1)**(2012), 109–119.
- [6] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25(2010), 529-539.

- [7] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009, pp. 1378. 1382.
- [8] F. Q. Wang, X. Li and X. H. Chen, Hesitant fuzzy soft set and its applications in multicriteria decision making, J. Appl. Math., Volume 2014, Article ID 643785, 10 pages.
- [9] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowledge-Based Systems, **31**(2012), 176–182.
- [10] M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Internat. J. Approx. Reason., 52(3)(2011), 395–407.
- [11] Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci., 181(11)(2011), 2128–2138.
- [12] Z. S. Xu and M. Xia, On distance and correlation measures of hesitant fuzzy information, Int. J. Intell. Syst., 26(5)(2011), 410–425.
- [13] X. H. Zhang, H. Jiang and S. A. Bhatti, On p-ideals of a BCI-algebra, Punjab Univ. J. Math., (Lahore) 27(1994), 121–128.