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ABSTRACT. Using the hesitant intersection (M), the notions of M-hesitant fuzzy subalge-
bras, M-hesitant fuzzy ideals and m-hesitant fuzzy p-ideals are introduced,and their rela-
tions and related properties are investigated. Conditions for a m-hesitant fuzzy ideal to
be a M-hesitant fuzzy p-ideal are provided. The extension property for m-hesitant fuzzy
p-ideals is established.

1. Introduction

The notions of Atanassov’s intuitionistic fuzzy sets, type 2 fuzzy sets and fuzzy
multisets etc. are a generalization of fuzzy sets. The concept of hesitant fuzzy sets,
which is introduced by Torra [6, 7], is another generalization of fuzzy sets. The
hesitant fuzzy set is very useful to express peoples hesitancy in daily life, and it is
a very useful tool to deal with uncertainty, which can be accurately and perfectly
described in terms of the opinions of decision makers. Xu and Xia [11] proposed a
variety of distance measures for hesitant fuzzy sets, based on which the correspond-
ing similarity measures can be obtained. They investigated the connections of the
aforementioned distance measures and further develop a number of hesitant ordered
weighted distance measures and hesitant ordered weighted similarity measures. Xu
and Xia [12] defined the distance and correlation measures for hesitant fuzzy in-
formation and then discussed their properties in detail. Also, hesitant fuzzy set
theory is used in decision making problem etc.(see [5, 8, 9, 10, 12]), and is applied
to residuated lattices and MT L-algebras (see [2, 4]).

In this paper, we introduce the notions of hesitant fuzzy subalgebras, hesi-
tant fuzzy ideals and hesitant fuzzy p-ideals based on the hesitant intersection (M),
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briefly, M-hesitant fuzzy subalgebras, m-hesitant fuzzy ideals and m-hesitant fuzzy
p-ideals, in BCK/BCI-algebras. We investigate their relations and related prop-
erties. We provide conditions for a M-hesitant fuzzy ideal to be a M-hesitant fuzzy
p-ideal. We finally establish the extension property for M-hesitant fuzzy p-ideals.

2. Preliminaries

An algebra (L;*,0) of type (2,0) is calleda BCI-algebra if it satisfies the fol-
lowing conditions:

(I) (Vo,y,2z€ L) (zxy)*(xx2))*(zxy) =0),
() (Va,y € L) ((x* (zxy)) *y = 0),

(III) (Ve L) (xxx=0),

(IV) (Vz,ye L) (zxy=0,yxx=0 = z =1y).

If a BCI-algebra L satisfies the following identity:
(V) (Vze L) (0xz=0),

then L is called a BC'K -algebra.
Any BCK/BC1T-algebra L satisfies the following conditions:

Ve e L)(xx0=ux),

Ve,y,z€ L)(z <y = zxz<yx*xz, 2%y < zxx),
Vo,y,z € L) ((xxy)x 2= (z*2)*y),
Vae,y,z€ L) ((x*x2)* (yx2) <x*xy)

~ o~ o~ —~
=W N =
NN AN NI
—~ e~~~

where x < y if and only if z xy = 0.
Any BC1I-algebra X satisfies the following conditions:

(25 (V5,2 € X) (05 (0% (25 2) 5 (3 2))) = (0 9) 5 (0%2)),
(2.6) (Ve,y € X) (0% (0% (zxy)) = (0xy) *(0*x)),
(2.7) (Ve e X) (0% (0% (0xx))=0x*z).

A BCI-algebra L is said to be p-semisimple(see [1]) if 0% (0 * z) = = for all
z e L.
Every p-semisimple BCI-algebra L satisfies:

(2.8) (Va,y,z€ L) ((z*x2)* (y*x2) =x*y).

A nonempty subset S of a BCK/BCI-algebra L is called a subalgebra of L if
xxy € Sforall z,y € S. A subset A of a BOK/BCI-algebra L is called an ideal
of L if it satisfies:

(2.9) 0eA,
(2.10) VMreLl)(zxyc A yec A = xcA).
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A subset A of a BCI-algebra L is called a p-ideal of L (see [13]) if it satisfies
(2.9) and

(2.11) (Ve,y,z€ L) ((z*x2)x(yx2) €A, ye A = xz€ A).

Note that an ideal A of a BC1I-algebra L is a p-ideal of L if and only if the
following assertion is valid:

(2.12) (Vo,y,z€ L) ((xx2)*x(yx2) €A = zxyc A).

We refer the reader to the books [1, 3] for further information regarding
BCK/BC1I-algebras.

3. Subalgebras and Ideals of BCK/BCI-Algebras Based on the Hesitant
Intersection

Let L be aset. A hesitant fuzzy set on L (see [6]) is defined in terms of a function
H that when applied to L returns a subset of [0, 1], that is, H : L — £(]0, 1]).

Given a hesitant fuzzy set H on L, we define InfH and SupX, respectively, as
follows:

|/ minimum of H(z) if H(x) is finite,
(3.1) Inft(x) = { infimum of H(x)  otherwise,
and

[ maximum of H(z) if H(x) is finite,
(3.2) SupH(z) = { supremum of H(z) otherwise

for all x € L. It is obvious that InfH and SupH are fuzzy sets in L.
For a hesitant fuzzy set H on L and =,y € L, we define

(3.3) H(z) UH(y) :=={t € H(x) UH(y) | t > max{InfH(x), InfH(y)}}
and
(3.4) H(x) mH(y) := {t € H(x) UH(y) | t < min{SupH(z), SupH(y)}}.

We say that H(z) UH(y) (resp., H(x) MmH(y)) is the hesitant union (resp., hesitant
intersection) of H(x) and H(y).
Proposition 3.1 For any hesitant fuzzy set H on L, we have

(1) (Vz e L) (H(z) YH(z) = H(x)).

(2) (Vz e L) (H(z)mH(z) = H(x)).

(3) (Va,b,z,y € L) (H(a) € H(z), H(b) € H(y) = H(a)MH(b) C H(z) mH(y)).
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(4) (Va,b,z,y € L) (9¢(a) C H(x), H(b) C H(y) = T(a) WIH(Eb) C H(x) UH(y)).

Proof. (1) and (2) are straightforward.

(3) Let a,b,z,y € L be such that H(a) € H(z) and H(b) C H(y). Then
Supﬂ{( ) < SupH(z) and SupH(b) < SupH(y). If t € H(a) M H(b), then

t € H(a) UH(b) € H(z) UH(y)

and ¢ < min{SupH(a), SupH(b)} < min{SupH(z), SupH(y)}.
Hence t € H(z) m H(y), and so H(a) M H(b) C H(x) m H(y).

(4) Let a,b,z,y € L be such that H(a) € H(z) and H(b) C H(y). Then
InfH(a) > InfH(x) and InfH(b) > InfH(y). If t € H(a) W H(b), then

t € H(a) UH(b) C H(z) UH(y)

and ¢t > max{InfH(a), InfH(b)} > max{InfH(z), InfH(y)}.
Hence t € H(x) UH(y), and so H(a) UH(b) C H(z) U H(y).

O

Definition 3.2 A hesitant fuzzy set on a BCK/BCI-algebra L is called a hesi-
tant fuzzy subalgebra of L based on the intersection (N) (briefly, N-hesitant fuzzy
subalgebra of L) if it satisfies:

(3.5) (Vz,y € L) (H(z *y) 2 H(z) N H(y)).

Definition 3.3 A hesitant fuzzy set on a BOK/BCTI-algebra L is called a hesitant
fuzzy subalgebra of L based on the hesitant intersection (M) (briefly, M-hesitant fuzzy
subalgebra of L) if it satisfies:

(3.6) (Va,y € L) (H(z + y) 2 H(x) mH(y)) -

Example 3.4 Let L = {0,1,2,3} be a BCK-algebra (see [3]) with the following
Cayley table:

x[0 1 2 3
0[0 0 0 0
/1010
212 2 0 0
3[3 2 10
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(1) Define a hesitant fuzzy set 3 on L as follows:

[0.3,0.8] ifz=0,
H:L— Z(0,1]), z+— < [03,0.7 ifx=1,
[0.3,0.5] if x € {2,3}.
It is easy to check that H is a M-hesitant fuzzy subalgebra of L.

(2) Define a hesitant fuzzy set G on L as follows:

02,0.8] ifz=0,

| 0.2,07] ifr=1,
§: L= 201D 229 105704 ifz=2
0.2,0.6] ifz=3.

Then G is not a M-hesitant fuzzy subalgebra of L since
GB)mG(1) ={t € 9(3)USG(1) | t <min{SupS(3),SupS(1)}

={t €10.2,0.7] | t < min{0.6,0.7}}
= [0.2,0.6] € [0.2,0.4] = §(2) = G(3 1).

It is clear that every M-hesitant fuzzy subalgebra is a N-hesitant fuzzy subalge-

bra, but the converse is not true in general as seen in the following example.

Example 3.5 Let L = {0, a,b,c,d} be a BCI-algebra (see [1]) with the following
Cayley table:

x10 a b ¢ d

00 0 b ¢ d

ala 0 b ¢ d

b|b b 0 d c

clc ¢ d 0 b

did d ¢ b 0

Define a hesitant fuzzy set H on L as follows:

[0,0.9] ifx=0,
[0.2,0.7] if v =a,
H:L— 2(0,1]), z— < (0.2,0.3] if x = b,
{0.4,0.5,0.6} ifz=c,
[0.6,0.7] ifx =d.

It is routine to check that H is a N-hesitant fuzzy subalgebra of L. Note that

H(b) MmH(d) = {z € H(b) UH(d) | x < min{SupH(b), SupH(d)}
= {z € (0.2,0.3]U[0.6,0.7] | & < min{0.3,0.7}}
= (0.2,0.3],
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and so H(bxd) = H(c) = {0.4,0.5,0.6} 2 (0.2,0.3] = H(b) M H(d). Therefore H is
not a M-hesitant fuzzy subalgebra of L.

For any hesitant fuzzy set 3 on a BCK/BCI-algebra L and € € Z([0,1]), we
consider the set
He:={rxeL|eCH)}

which is called the hesitant e-level set on L.

Theorem 3.6 If H is a M-hesitant fuzzy subalgebra of a BCK/BCI-algebra L,
then the hesitant e-level set H. on L is a subalgebra of L for all e € ([0, 1]) with
He #0.

Proof. Assume that J is a M-hesitant fuzzy subalgebra of a BCK/BCI-algebra
L and let € € £2([0,1]) be such that H. # 0. If z,y € He, then ¢ C H(z) and
e C H(y). It follows from (3.6) and Proposition 3.1(3) that

(3.7) H(a ) 2 H(x) AH(y) 2

and that = xy € H.. Therefore H, is a subalgebra of L. O

The converse of Theorem 3.6 is not true in general as seen in the following
example.
Example 3.7 Let L = {0,1,2,a,b} be a BCI-algebra (see [1]) with the following
Cayley table:

*x10 1 2 a b
0[]0 0 O a a
111 0 1 b a
212 2 0 a a
ala a a 0 0
b|b a b 1 0

Define a hesitant fuzzy set H on L as follows:

[0.3,0.8) ifx=0,
(0.3,0.5] ifx=1,
04,07 ifz=2,
(0.4,0.6) if x =a,
(0.4,0.5] ifz=b.

Then we have

{0} if e € [0.3,0. ,sg( .3,0.5) and ¢ € [0.4,0.7],
{0,2}  if£C[0.4,0.7] and ¢ € (0.4,0.6),
{0,2,a} ife C (0.4, 06 and e Z ( 04 05

B (
He = {0’1} 1fgC(0305 Eg(047

if £ C (0.4,0.5],
0 otherwise,
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and so H, is a subalgebra of L for all € € Z2([0,1]) with H. # (). Since
HE2)mHD) = {t € H(2) UH(D) | t < min{SupH(2), SupH(b)}
={t€[0.4,0.7] | t <min{0.7,0.5}}
=10.4,0.5] Z (0.4,0.6) = H(a) = H(2 = b),
H is not a M-hesitant fuzzy subalgebra of L.
Theorem 3.8 Let H be a hesitant fuzzy set on a BCK/BCI-algebra L such that

(3-8) (Va,y € L) (H(z) @ H(y) = H(x) N H(y)).-

If the hesitant e-level set H. on L is a subalgebra of L for all e € P(]0,1]) with
H. # 0, then H is a M-hesitant fuzzy subalgebra of L.

Proof. Assume that the set H. := {z € L | ¢ C H(x)} is a subalgebra of L for all

e € 2([0,1]) with H. # 0. For any x,y € L, let H(z) = ¢, and H(y) = ¢,. Take

€ =gz Néey. Then z,y € H,, and so z *y € H.. It follows from (3.8) that
H(x*xy) De=¢e,Ney =, Mey = H(z) MH(y).

Therefore H is a M-hesitant fuzzy subalgebra of L. ]

Definition 3.9 A hesitant fuzzy set on a BOCK/BCTI-algebra L is called a hesitant
fuzzy ideal of L based on the intersection (N) (briefly, N-hesitant fuzzy ideal of L) if
it satisfies:

(3.9) (Va € L) ((2) C H(0)).
(3.10) (v, € L) (3(z + y) N H(y) C H(z)).
Definition 3.10 A hesitant fuzzy set on a BC'K/BCI-algebra L is called a hesitant

fuzzy ideal of L based on the hesitant intersection (M) (briefly, M-hesitant fuzzy ideal
of L) if it satisfies the condition (3.9) and

(3.11) (Va,y € L) (30(a + y) @ H(y) C H(x)).

Example 3.11 Let (Z, +,0) be an additive group of integers. Note that (Z, —,0) is
the adjoint BC'I-algebra of (Z,+,0). For any BCI-algebra (Y, *,0),let L :=Y x Z.
Then (L, ®,(0,0)) is a BCI-algebra (see [1]) in which the operation ® is given by

(V(z,m), (y;n) € L) ((z,m) ® (y,n) = (z xy,m —n)).

For a subset A :=Y x Ny of L where Ny is the set of nonnegative integers, let H
be a hesitant fuzzy set on L defined by

(0.3,0.9) ifx € A,

H:L—2(0,1]), v { [0.3,0.6] otherwise.
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It is routine to verify that J{ is a M-hesitant fuzzy ideal of L.

It is clear that every M-hesitant fuzzy ideal is a N-hesitant fuzzy ideal, but the
converse is not true in general as seen in the following example.

Example 3.12 Let L = {0, e,a,b, c} be a BCI-algebra (see [1]) with the following
Cayley table:

*x|0 e a b c

0|0 0 a b c

ele 0 a b ¢

ala a 0 ¢ b

bib b ¢ 0 a

clec ¢ b a O

Define a hesitant fuzzy set H on L as follows:

[0,1) ifx =0,
[0.2,0.7) ifz=e,
H:L— 2(0,1]), z— ¢ (02,03] ifz=a,
{0.4,05} ifz =0,
[0.6,0.7) ifz=c

Then H is a N-hesitant fuzzy subalgebra of L. Note that

H(a*c) mH(c) = H(b) m H(c)
= {t € {0.4,0.5} U[0.6,0.7] | < min{0.5,0.7}}
= {0.4,0.5} Z (0.2,0.3) = H(a).

Hence H is not a M-hesitant fuzzy ideal of L.

Proposition 3.13 Every M-hesitant fuzzy ideal H of a BCI-algebra L satisfies the
following assertion:

(3.12) (Vx € L) (H(x) CHO* (0xx))).
Proof. For every x € L, we have

H(x)

H(x) mH(z) € H(O)mH(x)
(0% (0xx)) *z) MH(x)
0+ (0 %))

H
H

N

by Proposition 3.1, (III), (2.3) and (3.11). O

Theorem 3.14 If H is a M-hesitant fuzzy ideal of a BCK/BCI-algebra L, then
the hesitant e-level set H. on L is an ideal of L for all e € 2([0,1]) with H. # 0.
Proof. Suppose that H is a M-hesitant fuzzy ideal of a BCK/BCI-algebra L. Let
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x,y € L and € € Z([0,1]) be such that z xy € H. and y € H.. Then ¢ C H(z *y)
and € C H(y). It follows from (3.9), (3.11) and Proposition 3.1(3) that

HO0) D H(z) D H(z*y) mMH(y) De.

Hence 0 € H, and x € H.. Therefore H, is an ideal of L. O

The following example shows that the converse of Theorem 3.14 is not true in
general.

Example 3.15 Consider the BCI-algebra L in Example 3.11. For a subset A :=
Y X Ny of L where Ny is the set of nonnegative integers, let H be a hesitant fuzzy
set on L defined by

(0.3,0.9) ifx € A,

H:L—2(01]), z— { (0.4,0.6] otherwise.

Then H. is an ideal of L for all e € £([0,1]) with H. # 0. For any a € Y, we have
H((a,—3) ® (a,3)) M H(a,3) = H(0,—6) m H(a, 3)
= {t € H(0,—6) UH(a,3) | t < min{SupH (0, —6), SupH(a, 3)}}
={t €[0.3,0.9) | t <min{0.6,0.9}}
=10.3,0.6] € (0.4,0.6] = H(a, —3).
Hence H is not a M-hesitant fuzzy ideal of L.
We provide a condition for the converse of Theorem 3.14 to be true.

Theorem 3.16 Let H be a hesitant fuzzy set on a BCK/BCI-algebra L satisfying
the condition (3.8). If the hesitant e-level set H. on L is an ideal of L for all
e € 2(0,1]) with He # 0, then H is a M-hesitant fuzzy ideal of L.

Proof. For any = € L, let H(z) = €. Then = € H,_, and so H._ is an ideal of L
by assumption. Thus 0 € H._, and hence H(0) D £, = H(z). For any z,y € L, let
H(x *y) = €24y and H(y) = e,. Taking € = €44y N e, implies that « * y € H, and
y € H.. Hence z € H,, and it follows from the condition (3.8) that

H(x) D€ = €guy NEy = Equy Mey = H(z *y) MH(y).
Therefore H is a M-hesitant fuzzy ideal of L. a
Theorem 3.17 Let &1 and ey be subintervals of [0,1] such that
(1) es € &1, Infe; = Infey and Supes € e,
(2) Infey € g1 and Infeq € g5 (or, Infe; ¢ £1 and Infeqg ¢ 5).
Define a hesitant fuzzy set H on a BCK/BCI-algebra L as follows:

g1 ifxe A7
€9 otherwise,

H:L— 2(0,1)), x>—>{
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where A is a nonempty proper subset of L. Then H is a M-hesitant fuzzy ideal
(resp., subalgebra) of L if and only if A is an ideal (resp., subalgebra) of L.

Proof. Note that
A ifeCeande € e,

He=< L ifeCey,
() otherwise.

If H is a M-hesitant fuzzy ideal of L, then H, is an ideal of L for all ¢ € 22([0,1])
with H. # @ by Theorem 3.14. Hence A is an ideal of L.

Conversely, suppose that A is an ideal of L. Then H. is an ideal of L for all
e € Z([0,1]) with H. £ (. Let x,y € L. If z,y € A, then

H(z) mH(y) = {t € H(z) UH(y) | t < min{SupH(z), SupH(y)}}
=¢e; = H(z) N H(y).
If 2,y € L'\ A, then
3(r) M H(y) = {t € H(2) UH(y) | £ < min{SupH(z), Supd(y)}}
= €9 = 5{(:5) N j‘f(y)
Ifzre Aandy e L\ A, then
H(z) mH(y) = {t € H(z) UH(y) | t < min{SupH(z), SupH(y)}}
= {t € g1 | t < min{Supe, Supes }}
e {t cer | t < Supez}
=9 = H(z) N H(y).
Similarly, if x € L\ A and y € A, then H(z)nH(y) = H(z)NH(y). Thus H satisfies
the condition (3.8), and therefore H is a M-hesitant fuzzy ideal of L by Theorem

3.16. By the similar way, we can prove that H is a M-hesitant fuzzy subalgebra of
L if and only if A is a subalgebra of L. O

Proposition 3.18 For every M-hesitant fuzzy ideal H of a BCK/BCI-algebra L,
the following assertions are valid.

(1) (Vo,yeL)(z <y = H(x) 2H(y)),
(2) (Va,y,ze L) (xxy <z = H(zx) D H(y) mH(z)),

Proof. (1) Assume that < y for all x,y € L. Then z *y = 0, which implies from
(3.9), Proposition 3.1 and (3.11) that

H(y) = H(y) m H(y) < I(0) M H(y) = FH(z *y) M H(y) < H(z).
(2) Let x,y,z € L be such that  xy < z. Then (z *y) * z =0, and so

H(z) =H(z) mH(z) CHO)MH(z) = H((z*y) x 2) MH(z) C H(x xy)
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by (3.9), Proposition 3.1 and (3.11). It follows from Proposition 3.1 and (3.11) that
H(y) mH(z) € H(z+y) mH(y) © H(z).

O

Proposition 3.19 For every M-hesitant fuzzy ideal H of a BCK/BCI-algebra L,
the following assertions are equivalent.

(1) (Va,y € L) (H((z *xy) xy) € H(zxy)),
(2) (Va,y,2 € L) (H((x xy) * 2) C H((z * 2) * (y * 2))).

Proof. Suppose that (1) is true and let z,y,z € L. Note that

by (2.3),(2.4) and (2.2). Tt follows from Proposition 3.18(1), (1) and (2.3) that

CH((z*(yx*2))*z)
= H((z* 2) * (y * 2)),

which shows that (2) is valid.
Now, assume that (2) holds and take z := y in (2). Then

H((zxy)*y) CH((z*y) = (y*y)) = H((z xy) *0) = H(z *y)
by using (IIT) and (2.1). Thus (1) is valid. ad

We consider relations between a M-hesitant fuzzy subalgebra and a m-hesitant
fuzzy ideal.

Theorem 3.20 In a BCK-algebra, every m-hesitant fuzzy ideal is a M-hesitant
fuzzy subalgebra.

Proof. Let 3 be a M-hesitant fuzzy ideal of a BC K-algebra L. Using (3.11), (2.3),
(I11), (V), (3.9) and Proposition 3.1, we have

for all x,y € L. Hence H is a M-hesitant fuzzy subalgebra of L. |
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The converse of Theorem 3.20 is not true in general. In fact, consider a BCK-
algebra L = {0, 1,2} with the following Cayley table:

2
0
0
0
b

Let H be a hesitant fuzzy set on L defined by

0.3,0.8) if z =0,
H:L— 2(0,1)), v~ < [0.3,06] ifz=1,
0.3,0.7] ifa=2.

Then H is a M-hesitant fuzzy subalgebra of L, but it is not a M-hesitant fuzzy ideal
of L since

H(1 % 2) mH(2) = FH(0) mH(2)
= {t € H(0) UH(2) | t < min{SupH(0), SupH(2)}
={t€[0.3,0.8) | t <min{0.8,0.7}
=1[0.3,0.7] € [0.3,0.6] = H(1).

In a BCI-algebra, any m-hesitant fuzzy ideal may not be a M-hesitant fuzzy
subalgebra. In fact, the m-hesitant fuzzy ideal 3 of L in Example 3.11 is not a
M-hesitant fuzzy subalgebra of L since

H(a,0) mH(a,2) = {t € H(a,0)UH(a,2) |t < {SupH(a,0),SupH(a,2)}}

={t€10.3,0.9) | t <0.9}

=10.3,0.9) £ [0.3,0.6]

=H((a,0) ® (a7 2))
foralla €Y.

Definition 3.21 A hesitant fuzzy set H on a BCI-algebra L is called a hesitant
fuzzy p-ideal of L based on the hesitant intersection (M) (briefly, Mm-hesitant fuzzy
p-ideal of L) if it satisfies (3.9) and

(3.13) (Va,y,z € L) (H((z * 2) * (y * 2)) M H(y) C H(zx)).

Example 3.22 Let L = {0,a,b,c} be a BCI-algebra (see [1]) with the following
Cayley table.

*‘Oa b ¢
0/0 a b ¢
ala 0 ¢ b
b|b ¢ 0 a
cle b a O
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Define a hesitant fuzzy set H on L as follows:

. (0.4,0.7) if z € {0,b}
Hel=2(0.1]), 2 { (0.4,0.5] otherwise,

It is routine to verify that H is a M-hesitant fuzzy p-ideal of L.
Theorem 3.23 Let L be a BCI-algebra. Then every M-hesitant fuzzy p-ideal of L
s a M-hesitant fuzzy ideal of L.

Proof. Let J{ be a M-hesitant fuzzy p-ideal of L. Since x x 0 = x for all z € X, it
follows from taking z := 0 in (3.13) that

H(z) 2 H((z*0) * (y +0)) M H(y) = H(x xy) M H(y)

for all x,y € L. Therefore H is a M-hesitant fuzzy ideal of L. a

The following example shows that the converse of Theorem 3.23 is not true in
general.
Example 3.24 Consider a BCI-algebra L = {0, 1, a, b, ¢} with the following Cayley
table (see [1]).

*x|10 1 a b c
0|0 0 ¢ b a
1{1 0 ¢ b a
ala a 0 ¢ b
blb b a 0 ¢
cle ¢ b a 0

Define a hesitant fuzzy set H on L as follows:

(0.2,0.9) ifz =0,
H:L— 2(0,1]), x4 (02,07 ifz=1,
(0.2,0.5] otherwise,

Then H is a M-hesitant fuzzy ideal of L. But it is not a M-hesitant fuzzy p-ideal of
L since

H((1*a)* (0xa)) mHO) =H(c*c)mH(0)
= 3(0) = (0,2,0.9) ¢ (0.2,0.7] = H(1).

Proposition 3.25 FEvery m-hesitant fuzzy p-ideal H of a BCI-algebra L satisfies
the following assertion:

(3.14) (Vz € L) (H(0* (0 x)) C H(z)).
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Proof. Let 3 be a M-hesitant fuzzy p-ideal of L. If we put z := x and y := 0 in
(3.13), then

H(2) 2 H((@+ @) * (0% ) MH(0) = H(0 * (0 2)) A H(0) 2 FH(0 % (0% )

for all x € L by (III), (3.9) and Proposition 3.1. O
Proposition 3.26 Every m-hesitant fuzzy p-ideal H of a BCI-algebra L satisfies:

(3.15) (Vo,y,z € L) (H(z xy) C H((z * 2) x (y * 2))) .

Proof. Let H be a M-hesitant fuzzy p-ideal of L. Then it is a M-hesitant fuzzy ideal
of L by Theorem 3.23. Using (3.11), (2.4) and Proposition 3.1, we have
H((@+ 2) * (y x 2)) 2 H(((w ) * (y + 2)) * (zxy)) 0 H(z+y)
=H(0) M H(z *xy) D H(x xy)
for all x,y,z € L. O

We provide conditions for a M-hesitant fuzzy ideal to be a M-hesitant fuzzy
p-ideal.

Theorem 3.27 Let H be a M-hesitant fuzzy ideal of L such that
(3.16) (Vz,y,z € L) (H(z xy) D H((z * 2) * (y * 2))) .

Then H is a M-hesitant fuzzy p-ideal of L.
Proof. If the condition (3.16) is valid, then

H(x) 2 H(z = y) 0 H(y) 2 H((x * 2) * (y x 2)) 0 H(y)

for all z,y,z € L by (3.11) and Proposition 3.1. Therefore H is a M-hesitant fuzzy
p-ideal of L. O

Theorem 3.28 If a M-hesitant fuzzy ideal H of L satisfies the condition (3.14),
then it is a M-hesitant fuzzy p-ideal of L.

Proof. Let x,y,z € L. Using Proposition 3.13, (2.5), (2.6) and (3.14), we have

It follows from Theorem 3.27 that H is a M-hesitant fuzzy p-ideal of L. O

Theorem 3.29 In a p-semisimple BCI-algebra, every M-hesitant fuzzy ideal is a
Mm-hesitant fuzzy p-ideal.
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Proof. Let H be a M-hesitant fuzzy ideal of a p-semisimple BCI-algebra L. Using
(3.11) and (2.8), we have

H(z) 2 H(z +y) M H(y) = H((z * 2) * (y x 2)) @ H(y)

for all x,y, z € L. Therefore H is a M-hesitant fuzzy p-ideal of L. a

Theorem 3.30 (Extension property for M-hesitant fuzzy p-ideals) Let H and G be
M-hesitant fuzzy ideals of a BCI-algebra L such that 3(0) = G(0) and H(z) C G(z)
for all x € L. If H is a M-hesitant fuzzy p-ideal of L, then so is §G.

Proof. Assume that H is a M-hesitant fuzzy p-ideal of X. Using (2.6), (2.7) and
(ITI), we have 0% (0% (x* (0% (0%x)))) = 0 for all z € X. It follows from hypothesis
and (3.14) that

G(z x (0% (0xx)))

and that

xx (0% (0xx))) M0 (0*x))
0) M G0 (0x*x))

0+ (0xx))mSG(0x*(0x*x))

0+ (0x*x))

by (3.11), (3.9) and Proposition 3.1. Therefore G is a M-hesitant fuzzy p-ideal of X
by Theorem 3.28. m]
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