DOI QR코드

DOI QR Code

Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide

그래핀 옥사이드와 복합화한 PEDOT/PSS 필름의 열적 안정성에 관한 연구

  • Choi, Jong Hyuk (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Park, Wan-Su (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Lee, Seong Min (EverChemTech Co., Ltd.) ;
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 최종혁 (수원대학교 공과대학 신소재공학과) ;
  • 박완수 (수원대학교 공과대학 신소재공학과) ;
  • 이성민 ((주) 에버켐텍) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Received : 2016.05.23
  • Accepted : 2016.06.15
  • Published : 2016.08.10

Abstract

In order to investigate the thermal stability of electro-conductive poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS), we have prepared films by casting PEDOT/PSS aqueous solution without using a binding material and measured surface resistances of the films while annealing at $200^{\circ}C$. Electrical properties of films were improved by annealing, and the maximum conductivity ($540S{\cdot}m^{-1}$) after annealing for 2 hrs was found to be approximately 3 times higher than that ($180S{\cdot}m^{-1}$) of the original film. The conductivities, however, dramatically decreased with an increase in annealing time and dissipated after 24 hrs of annealing. On the other hand, PEDOT/PSS films hybridized with graphene oxide (GO) displayed a salient improvement in conductivity by annealing, which was measured to be around $600S{\cdot}m^{-1}$ even after 30 hrs of annealing at $200^{\circ}C$. We tentatively conclude that hybridization with GO enhances the thermal stability of PEDOT/PSS.

전도성 고분자인 PEDOT/PSS의 열적 안정성을 검토하기 위하여 바인딩 물질 없이 캐스팅하는 방법에 의해서 필름을 제조하고, $200^{\circ}C$에서 annealing하면서 표면저항의 변화를 검토하였다. PEDOT/PSS 필름은 열처리에 의해서 전기적 특성이 향상되었으며, 2 h 정도에서 최대 전도도값($540S{\cdot}m^{-1}$)을 나타내어 초기 값($180S{\cdot}m^{-1}$)에 비해서 3배 정도 높아졌다. 그러나 시간이 지남에 따라 전기전도도가 떨어지고, 24 h이 지난 이후에는 거의 전기적 특성을 나타내지 않았다. 한편, 산화 그래핀(GO)과 복합화한 PEDOT/PSS 필름에서는 열처리에 의한 전기적 특성의 향상이 더 뚜렷하였으며, $200^{\circ}C$에서 30 h 이상 보관하더라도 전기전도도가 $600S{\cdot}m^{-1}$ 정도를 유지하는 것으로 나타나, GO와의 복합화가 PEDOT/PSS의 열적 안정성을 현저하게 향상시키는 것을 확인할 수 있었다.

Keywords

References

  1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, J. Chem. Soc. Chem. Comm., 578-580 (1977).
  2. J. H. Hong and K. S. Jang, Synthesis and characterization of soluble polypyrrole with high conductivity, J. Korean Ind. Eng. Chem., 18, 234-238 (2007).
  3. Y. H. Lee, Y. W. Ju, H. R. Jung, Y. I. Huh, and W. J. Lee, Preparation of polypyrrole/sulfonated-SEBS conducting composites through an inverted emulsion pathway, J. Ind. Eng. Chem., 11, 550-555 (2005).
  4. J. M. Lee and K. H. Lim, Electrochemical synthesis of conducting polythiophene in an ultrasonic field, J. Ind. Eng. Chem., 6, 157-162 (2000).
  5. H. Munstedt, Ageing of electrically conducting organic materials, Polymer, 29, 296-302 (1988). https://doi.org/10.1016/0032-3861(88)90337-0
  6. F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, and L. Leenders, PEDOT/PSS: Synthesis, characterization, properties and applications‚ Synth. Met., 135, 115-117 (2003).
  7. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future‚ Adv. Mater., 12, 481-494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  8. K. R. Kim, S. H. Oh, H. B. Kim, J. P. Jeun, and P. H. Kang, Water-soluble conjugated polymer and graphene oxide composite used as an efficient hole-transporting layer for organic solar cells, Polymer(Korea), 38, 38-42 (2014).
  9. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, and K. Leo, Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Adv. Funct. Mater., 21, 1076-1081 (2011). https://doi.org/10.1002/adfm.201002290
  10. J. C. Yu, J. I. Jang, B. R. Lee, G. W. Lee, J. T. Han, and M. H. Song, Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer, ACS Appl. Mater. Interfaces, 6, 2067-2073 (2014). https://doi.org/10.1021/am4051487
  11. B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors, Macromolecules, 42, 6741-6747 (2009). https://doi.org/10.1021/ma901182u
  12. L. S. C. Pingree, B. A. MacLeod, and D. S. Ginger, The changing face of PEDOT:PSS films: Substrate, bias, and processing effects on vertical charge transport, J. Phys. Chem. C, 112, 7922-7927 (2008). https://doi.org/10.1021/jp711838h
  13. K. E. Aasmundtveit, E. J. Samuelsen, L. A. A. Pettersson, O. Inganas, T. Johansson, and R. Feidenhans'I, Structure of thin films of poly(3,4-ethylenedioxythiophene), Synth. Met., 101, 561-564 (1999). https://doi.org/10.1016/S0379-6779(98)00315-4
  14. Q. Feng, K. Du, Y. K. Li, P. Shi, and Q. Feng, Effect of annealing on performance of PEDOT:PSS/n-GaN Schottky solar cells, Chin. Phys. B, 23, 077303 (2014). https://doi.org/10.1088/1674-1056/23/7/077303
  15. J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. C. Bradley, Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films, Synth. Met., 139, 569-572 (2003). https://doi.org/10.1016/S0379-6779(03)00280-7
  16. S. Kim, I. Do, and L. T. Drazal, Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites, Polym. Compos., 31, 755-761 (2010).
  17. I. H. Kim and Y. G. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity, J. Polym. Sci. B Polym. Phys., 48, 850-858 (2010). https://doi.org/10.1002/polb.21956
  18. S. Ansari and E. P. Giannelis, Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites, J. Polym. Sci. B Polym. Phys., 47, 888-897 (2009). https://doi.org/10.1002/polb.21695
  19. Z. Xu and C. Gao, In situ Polymerization approach to graphene-reinforced Nylon-6 composites, Macromolecules, 43, 6716-6723 (2010). https://doi.org/10.1021/ma1009337
  20. W. L. Zhang, B. J. Park, and H. J. Choi, Colloidal graphene oxide/ polyaniline nanocomposite and its electrorheology, Chem. Commun., 46, 5596-5598 (2010). https://doi.org/10.1039/c0cc00557f
  21. S. B. Lee, S. M. Lee, N. I. Park, S. H. Lee, and D. W. Chung, Preparation and characterization of conducting polymer nanocomposite with partially reduced graphene oxide, Synth. Met., 201, 61-66 (2015). https://doi.org/10.1016/j.synthmet.2015.01.021
  22. D. S. Perloff, Four-point sheet resistance correction factors for thin rectangular samples, Solid State Electron., 20, 681-687 (1977). https://doi.org/10.1016/0038-1101(77)90044-2
  23. B. Fan, X. Mei, and J. Ouyang, Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) film by adding anionic surfactants into polymer solution, Macromolecules, 41, 5971-5973 (2008). https://doi.org/10.1021/ma8012459
  24. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films, Adv. Funct. Mater., 15, 290-296 (2005). https://doi.org/10.1002/adfm.200400073
  25. Y. Kim, M. Shin, and H. Kim, Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells, Macromol. Res., 16, 185-188 (2008). https://doi.org/10.1007/BF03218850
  26. Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells, Org. Electron., 10, 205-209 (2009). https://doi.org/10.1016/j.orgel.2008.10.003
  27. T. P. Nguyen, P. Le Rendu, P. D. Long, and S. A. De Vos, Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes, Surf. Coat. Technol., 180-181, 646-649 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.110
  28. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, Thermal Degradation Mechanisms of PEDOT:PSS, Org. Electron., 10, 61-66 (2009). https://doi.org/10.1016/j.orgel.2008.10.008
  29. G. Greczynski, T. Kugler, and W. R. Salaneck, Characterization of The PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy, Thin Solid Films, 354, 129-135 (1999). https://doi.org/10.1016/S0040-6090(99)00422-8
  30. N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Preparation and characterization of PEDOT/PSS hybrid with graphene derivative wrapped by water-soluble polymer, Appl. Chem. Eng., 25, 581-585 (2014). https://doi.org/10.14478/ace.2014.1087
  31. J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment, Polymer, 45, 8443-8450 (2004). https://doi.org/10.1016/j.polymer.2004.10.001
  32. E. Tamburri, S. Sarti, S. Orlanducci, M. L. Terranova, and M. Rossi, Study of PEDOT conductive polymer film by admittance measurements, Mater. Chem. Phys., 125, 397-404 (2011). https://doi.org/10.1016/j.matchemphys.2010.10.042
  33. J. Zhang, L. Gao, J. Sun, Y. Liu, Y. Wang, and J. Wang, Incorporation of single-walled carbon nanotubes with PEDOT/PSS in DMSO for The production of transparent conducting films, Diam. Relat. Mater., 22, 82-87 (2012). https://doi.org/10.1016/j.diamond.2011.12.008
  34. A. Keawprajak, W. Koetniyom, P. Piyakulawat, K. Jiramitmongkon, S. Pratontep, and U. Asawapirom, Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT:PSS film and performance of polymer photovoltaic cells, Org. Electron., 14, 402-410 (2013). https://doi.org/10.1016/j.orgel.2012.11.005
  35. K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes, Langmuir, 27, 2014-2018 (2011). https://doi.org/10.1021/la104420p
  36. D. Sun, L. Jin, Y. Chen, J. R. Zhang, and J. J. Zhu, Microwave assisted In situ synthesis of graphene/PEDOT hybrid and its application in supercapacitors, Chem. Plus Chem., 78, 227-234 (2013).
  37. Y. H. Yoon, S. H. Seo, G. Y. Kim, and H. Y. Lee, Atomic dopants involved in the structural evolution of thermally graphitized graphene, Chem. Eur. J., 18, 13466-13472 (2012). https://doi.org/10.1002/chem.201201901
  38. C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014). https://doi.org/10.1039/C3CS60303B
  39. J. W. Choi, S. B. Lee, S. M. Lee, W. S. Park, and D. W. Chung, Effect of amine compounds on electrical properties of graphene oxide films made by bar coating, Appl. Chem. Eng., 26, 331-335 (2015). https://doi.org/10.14478/ace.2015.1032