DOI QR코드

DOI QR Code

Comparative Proteomic Analysis of Yak Follicular Fluid during Estrus

  • Guo, Xian (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Pei, Jie (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Ding, Xuezhi (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Chu, Min (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Bao, Pengjia (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Wu, Xiaoyun (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Liang, Chunnian (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences) ;
  • Yan, Ping (Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences)
  • Received : 2015.09.01
  • Accepted : 2015.12.18
  • Published : 2016.09.01

Abstract

The breeding of yaks is highly seasonal, there are many crucial proteins involved in the reproduction control program, especially in follicular development. In order to isolate differential proteins between mature and immature follicular fluid (FF) of yak, the FF from yak follicles with different sizes were sampled respectively, and two-dimensional gel electrophoresis (2-DE) of the proteins was carried out. After silver staining, the Image Master 2D platinum software was used for protein analysis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was performed for differential protein identification. The expression level of transferrin and enolase superfamily member 1 (ENOSF1) was determined by Western blotting for verification analysis. The results showed that 2-DE obtained an electrophoresis map of proteins from mature and immature yak FF with high resolution and repeatability. A comparison of protein profiles identified 12 differently expressed proteins, out of which 10 of them were upregulated while 2 were downregulated. Western blotting showed that the expression of transferrin and ENOSF1 was enhanced with follicular development. Both the obtained protein profiles and the differently expressed proteins identified in this study provided experimental data related to follicular development during yak breeding seasons. This study also laid the foundation for understanding the microenvironment during oocyte development.

Keywords

References

  1. Bailey, S., R. W. Evans, R. C. Garratt, B. Gorinsky, S. Hasnain, C. Horsburgh, H. Jhoti, P. F. Lindley, A. Mydin, and R. Sarra et al. 1988. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry 27:5804-5812. https://doi.org/10.1021/bi00415a061
  2. Baker, H. M., Q. Y. He, S. K. Briggs, A. B. Mason, and E. N. Baker. 2003. Structural and functional consequences of binding site mutations in transferrin: Crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Biochemistry 42:7084-7089. https://doi.org/10.1021/bi020689f
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Dolnick, B. J., N. J. Angelino, R. Dolnick, and J. R. Sufrin. 2003. A novel function for the rTS gene. Cancer Biol. Ther. 2:364-369. https://doi.org/10.4161/cbt.2.4.424
  5. Dolnick, B. J. 1993. Cloning and characterization of a naturally occurring antisense RNA to human thymidylate synthase mRNA. Nucleic Acids Res. 21:1747-1752. https://doi.org/10.1093/nar/21.8.1747
  6. Finckbeiner, S., P. J. Ko, B. Carrington, R. Sood, K. Gross, B. Dolnick, J. Sufrin, and P. Liu. 2011. Transient knockdown and overexpression reveal a developmental role for the zebrafish enosf1b gene. Cell Biosci. 1:32. https://doi.org/10.1186/2045-3701-1-32
  7. Fortune, J. E. 1994. Ovarian follicular growth and development in mammals. Biol. Reprod. 50:225-232. https://doi.org/10.1095/biolreprod50.2.225
  8. Gerlt, J. A., P. C. Babbitt, and I. Rayment. 2005. Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch. Biochem. Biophys. 433:59-70. https://doi.org/10.1016/j.abb.2004.07.034
  9. Guo, X., X. Z. Ding, J. Pei, P. J. Bao, C. N. Liang, M. Chu, and P. Yan. 2012. Efficiency of in vitro embryo production of yak (Bos grunniens) cultured in different maturation and culture conditions. J. Appl. Anim. Res. 40:323-329. https://doi.org/10.1080/09712119.2012.692327
  10. Gorg, A., W. Weiss, and M. J. Dunn. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665-3685. https://doi.org/10.1002/pmic.200401031
  11. Han, X., A. Aslanian, and J. R. Yates. III. 2008. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12:483-490. https://doi.org/10.1016/j.cbpa.2008.07.024
  12. Hanrieder, J., A. Nyakas, T. Naessen, and J. Bergquist. 2008. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J. Proteome Res. 7:443-449. https://doi.org/10.1021/pr070277z
  13. Kovac, S., A. Ferrand, J. P. Esteve, A. B. Mason, and G. S. Baldwin. 2009. Definition of the residues required for the interaction between glycine-extended gastrin and transferrin in vitro. FEBS J. 276:4866-4874. https://doi.org/10.1111/j.1742-4658.2009.07186.x
  14. Liu, A. X., Y. M. Zhu, Q. Luo, Y. T. Wu, H. J. Gao, X. M. Zhu, C. M. Xu, and H. F. Huang. 2007. Specific peptide patterns of follicular fluids at different growth stages analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biochim. Biophys. Acta 1770:29-38. https://doi.org/10.1016/j.bbagen.2006.06.017
  15. Liu, B., H. Zhang, M. Hao, and S. Yu. 2012. Establishment and characterization of two fetal fibroblast cell lines from the yak. In Vitro Cell. Dev. Biol. Anim. 48:619-624. https://doi.org/10.1007/s11626-012-9559-z
  16. Moritz, C. P., S. X. Marz, R. Reiss, T. Schulenborg, and E. Friauf. 2014. Epicocconone staining: A powerful loading control for Western blots. Proteomics 14:162-168. https://doi.org/10.1002/pmic.201300089
  17. Nandedkar, T. D., J. K. Shahid, R. Mehta, S. B. Moodbidri, U. C. Hegde, and I. N. Hinduja. 1992. Localization and detection of ovarian follicular fluid protein in follicles of human ovaries. Indian J. Exp. Biol. 30:271-275.
  18. Orly, J., G. Sato, and G. F. Erickson. 1980. Serum suppresses the expression of hormonally induced function in cultured granulosa cells. Cell 20:817-827. https://doi.org/10.1016/0092-8674(80)90328-1
  19. Park, I., E. Schaeffer, A. Sidoli, F. E. Baralle, G. N. Cohen, and M. M. Zakin. 1985. Organization of the human transferrin gene: Direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. USA. 82:3149-3153. https://doi.org/10.1073/pnas.82.10.3149
  20. Revelli, A., L. D. Piane, S. Casano, E. Molinari, M. Massobrio, and P. Rinaudo. 2009. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7:40. https://doi.org/10.1186/1477-7827-7-40
  21. Sarkar, M. and B. S. Prakash. 2005. Synchronization of ovulation in yaks (Poephagus grunniens L.) using $PGF2{\alpha}$ and GnRH. Theriogenology 63:2494-2503. https://doi.org/10.1016/j.theriogenology.2004.10.017
  22. Sarkar, M., D. H. Sengupta, B. D. Bora, J. Rajkhoa, S. Bora, S. Bandopadhaya, M. Ghosh, F. A. Ahmed, P. Saikia, K. Mohan, and B. S. Prakash. 2008. Efficacy of heatsynch protocol for induction of estrus, synchronization of ovulation and timed artificial insemination in yaks (Poephagus grunnies L.). Anim. Reprod. Sci. 104:299-305. https://doi.org/10.1016/j.anireprosci.2007.02.010
  23. Schweigert, F. J., B. Gericke, W. Wolfram, U. Kaisers, and J. W. Dudenhausen. 2006. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Hum. Reprod. 21:2960-2968. https://doi.org/10.1093/humrep/del257
  24. Spitzer, D., K. F. Murach, F. Lottspeich, A. Staudach, and K. Illmensee. 1996. Different protein patterns derived from follicular fluid of mature and immature human follicles. Hum. Reprod. 11:798-807. https://doi.org/10.1093/oxfordjournals.humrep.a019257
  25. Upadhyay, R. D., N. H. Balasinor, A. V. Kumar, G. Sachdeva, P. Parte, and K. Dumasia. 2013. Proteomics in reproductive biology: Beacon for unraveling the molecular complexities. Biochim. Biophys. Acta 1834:8-15. https://doi.org/10.1016/j.bbapap.2012.10.004
  26. Wally, J., P. J. Halbrooks, C. Vonrhein, M. A. Rould, S. J. Everse, A. B. Mason, and S. K. Buchanan. 2006. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J. Biol. Chem. 281:24934-24944. https://doi.org/10.1074/jbc.M604592200
  27. Yan, J. X., R. Wait, T. Berkelman, R. A. Harry, J. A. Westbrook, C. H. Wheeler, and M. J. Dunn. 2000. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666-3672. https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6
  28. Zhou, D. H., Z. G. Yuan, F. R. Zhao, H. L. Li, Y. Zhou, R. Q. Lin, F. C. Zou, H. Q. Song, M. J. Xu, and X. Q. Zhu. 2011. Modulation of mouse macraophage proteome induced by Toxoplasma gondii tachyzoites in vivo. Parasitol. Res. 109:1637-1646. https://doi.org/10.1007/s00436-011-2435-z
  29. Zi, X. D. 2003. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 59:1303-1312. https://doi.org/10.1016/S0093-691X(02)01172-X