DOI QR코드

DOI QR Code

Components Clustering for Modular Product Design Using Network Flow Model

네트워크 흐름 모델을 활용한 모듈러 제품 설계를 위한 컴포넌트 군집화

  • Son, Jiyang (Department of Business Administration, Dong-A University) ;
  • Yoo, Jaewook (Department of Business Administration, Dong-A University)
  • Received : 2016.05.10
  • Accepted : 2016.07.07
  • Published : 2016.07.31

Abstract

Modular product design has contributed to flexible product modification and development, production lead time reduction, and increasing product diversity. Modular product design aims to develop a product architecture that is composed of detachable modules. These modules are constructed by maximizing the similarity of components based on physical and functional interaction analysis among components. Accordingly, a systematic procedure for clustering the components, which is a main activity in modular product design, is proposed in this paper. The first phase in this procedure is to build a component-to-component correlation matrix by analyzing physical and functional interaction relations among the components. In the second phase, network flow modeling is applied to find clusters of components, maximizing their correlations. In the last phase, a network flow model formulated with linear programming is solved to find the clusters and to make them modular. Finally, the proposed procedure in this research and its application are illustrated with an example of modularization for a vacuum cleaner.

모듈러 제품 설계는 유연한 제품 수정, 제품 개발 및 생산 리드타임 감소, 제품의 다양성 증대와 같은 많은 장점들이 있다. 모듈러 제품 설계의 목적은 여러 개의 모듈들로 구성된 제품의 아키텍쳐를 효율적으로 개발하는 것인데, 이들 모듈들은 컴포넌트들 간 물리적, 기능적 상호관계 분석을 토대로 컴포넌트들 간의 유사성을 최대화함으로써 만들어 질 수 있다. 본 연구에서는 모듈러 제품 설계의 핵심 작업인 모듈화를 위하여 3개 단계로 이뤄진 체계적인 절차를 제시하고자 한다. 첫 번째 단계는 컴포넌트들 간 물리적, 기능적 상호관계 분석을 통한 컴포넌트들 간 상관 관계 매트릭스를 구성하는 것이고, 두 번째 단계는 컴포넌트들 간 상관 관계를 최대화하는 컴포넌트들의 군집들을 찾아내기 위하여 네트워크 흐름으로 모델링하는 것이다. 마지막으로 세 번째 단계에서는 선형 계획 모형인 네트워크 흐름 모델을 풀어서 컴포넌트들의 군집들을 찾아내고 이들을 모듈화 하는 것이다. 본 연구에서 제시한 절차의 이해와 실제 적용을 위하여 진공 청소기 모듈화 사례에 적용해 보고 절차의 타당성을 보여준다.

Keywords

References

  1. ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schonsleben, P., Tseng, M., & Bernard, A. (2013). Product variety management. CIRP Annals-Manufacturing Technology, vol. 62, no. 2, pp. 629-652. DOI: http://dx.doi.org/10.1016/j.cirp.2013.05.007
  2. Kidd, Paul T., "Agile manufacturing: a strategy for the 21st century", Agile Manufacturing (Digest No. 1995/179), IEE Colloquium on. IET, 1995. DOI: http://dx.doi.org/10.1049/ic:19951097
  3. Jiao, J., &Tseng, M. M., "Understanding product family for mass customization by developing commonality indices," Journal of Engineering Design, vol. 11, no. 3, pp.225-243, 2000. DOI: http://dx.doi.org/10.1080/095448200750021003
  4. Gu, P., Hashemian, M., Sosale, S., & Rivin, E., An integrated modular design methodology for life-cycle engineering. CIRP Annals-Manufacturing Technology, vol. 46, no. 1, pp. 71-74, 1997. DOI: http://dx.doi.org/10.1016/S0007-8506(07)60778-1
  5. Gu, P., &Sosale, S., "Product modularization for life cycle engineering," Robotics and Computer-Integrated Manufacturing, vol. 15, no. 5, pp.387-401, 1999. DOI: http://dx.doi.org/10.1016/S0736-5845(99)00049-6
  6. Kreng, V. B., &Lee, T., "Modular product design with grouping genetic algorithm-a case study," Computers &Industrial Engineering, vol. 46, no. 3, pp. 443-460, 2004. DOI: http://dx.doi.org/10.1016/j.cie.2004.01.007
  7. Eppinger, S.D. &Ulrich, K.T., Product design and development, McGraw Hill New York, 1995.
  8. Ulrich, K., Fundamentals of product modularity. p. 219-231, Springer, 1994. DOI: http://dx.doi.org/10.1007/978-94-011-1390-8_12
  9. Huang, C., "Overview of modular product development," Proceedings-National Science Council Republic of China Part a Physical Science and Engineering, vol. 24, no. 3, pp.149-165, 2000.
  10. Jose, A., &Tollenaere, M., "Modular and platform methods for product family design: Literature analysis," Journal of Intelligent Manufacturing, vol. 16, no. 3, pp.371-390, 2005. DOI: http://dx.doi.org/10.1007/s10845-005-7030-7
  11. Pimmler, T. U., &Eppinger, S. D., "Integration analysis of product decompositions," 1994.
  12. Sa'ed, M. S., &Kamrani, A. K., "Macro level product development using design for modularity," Robotics and Computer-Integrated Manufacturing, vol. 15, no. 4, pp.319-329, 1999. DOI: http://dx.doi.org/10.1016/S0736-5845(99)00008-3
  13. Yu, T. L., Yassine, A. A., & Goldberg, D. E., "An information theoretic method for developing modular architectures using genetic algorithms," Research in Engineering Design, vol. 18, no. 2, pp.91-109, 2007. DOI: http://dx.doi.org/10.1007/s00163-007-0030-1
  14. Yu, S., Yang, Q., Tao, J., Tian, X., & Yin, F. "Product modular design incorporating life cycle issues-Group Genetic Algorithm (GGA) based method," Journal of Cleaner Production, vol. 19, no. 9, pp. 1016-1032, 2011. DOI: http://dx.doi.org/10.1016/j.jclepro.2011.02.006
  15. Stone, R. B., Wood, K. L., & Crawford, R. H., "A heuristic method for identifying modules for product architectures," Design studies, vol. 21, no. 1, pp. 5-31, 2000. DOI: http://dx.doi.org/10.1016/S0142-694X(99)00003-4
  16. Erixon, G., von Yxkull, A., &Arnstroem, A., "Modularity-the basis for product and factory reengineering," CIRP Annals-Manufacturing Technology, vol. 45, no. 1, pp.1-6, 1996. DOI: http://dx.doi.org/10.1016/S0007-8506(07)63005-4
  17. Holtta, K., Tang, V., &Seering, W. P., "Modularizing product architectures using dendrograms," DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, Stockholm, 2003.
  18. Ericsson, A. &Erixon, G., Controlling design variants: modular product platforms, Society of Manufacturing Engineers, 1999.