DOI QR코드

DOI QR Code

Magnetic Properties of R-YIG (R = La, Nd, and Gd) Derived by a Sol-gel Method

  • Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI)) ;
  • Lim, Jae Cheong (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI)) ;
  • Choi, Sang Mu (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI)) ;
  • Kim, Chul Sung (Department of nano-electro physics, Kookmin University)
  • Received : 2016.06.13
  • Accepted : 2016.07.19
  • Published : 2016.09.30

Abstract

$Y_{3-x}R_xFe_5O_{12}$ (R = La, Nd, and Gd) powder were fabricated using a sol-gel pyrolysis method. Their magnetic properties and crystalline structures were investigated using x-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ Spectrometer. The $M{\ddot{o}}ssbauer$ spectra for the powders were taken at various temperatures ranging from 12 K to Curie temperature (Tc). The isomer shifts indicated that the valence states of Fe ions for the 16(a) and 24(d) sites have a ferric character. The saturation magnetization (Ms) increases from 32 to 34 (emu/g) for the YIG, and Nd-YIG, respectively. However, Ms decreases to 27 (emu/g) at Gd-YIG.

Keywords

References

  1. F. Chen, Q. Li, X. Wang, Z. Feng, Y. Chen, and V. G. Harris, IEEE Trans. Magn. 51, 205804 (2015).
  2. P. W. Peterman, M. Ye, and P. E. Wigen, J. Appl. Phys. 76, 6886 (1994). https://doi.org/10.1063/1.358101
  3. S. Geller and M. A. Gilleo, J. Phys. Chem. Solids. 3, 30 (1957). https://doi.org/10.1016/0022-3697(57)90044-6
  4. K. Matsumoto, K. Yamaguchi, and T. Fuji, IEEE Trans. J. Magn. in Japan 6, 614 (1991). https://doi.org/10.1109/TJMJ.1991.4565218
  5. C. S. Kim, Y. R. Uhm, and J. G. Lee, J. Magn. Soc. Japan 23, 534 (1999). https://doi.org/10.3379/jmsjmag.23.534
  6. C. H. Lin, H. Y. Chang, and I. N. Lin, IEEE Trans. Magn. 33, 3415 (1997). https://doi.org/10.1109/20.617962
  7. Z. Cheong, H. Yang, L. Yu, Y. Cui, and S. Feng, J. Magn. Magn. Mater. 302, 259 (2006). https://doi.org/10.1016/j.jmmm.2005.09.015
  8. R. D. Sanchez and J. Rivas J. Magn. Magn. Mater. 247, 92 (2002). https://doi.org/10.1016/S0304-8853(02)00170-1
  9. Y. R. Uhm, S. J. Kim, and C. S. Kim, IEEE Trans. Magn. 37, 2428 (2001). https://doi.org/10.1109/20.951193
  10. Y. B. Lee and K. P. Chae, J. Phys. Chem. Solids 62, 1335 (2001). https://doi.org/10.1016/S0022-3697(01)00031-2
  11. V. M. Sarnatskii, I. O. Mavlonazrov, and L. V. Lutsev, Tech. Phys. Lett. 40, 622 (2014). https://doi.org/10.1134/S1063785014070256
  12. F. W. Aldbea and N. B. Ibrahim, J. Mater. Sci. & Appli. 1, 185 (2015).
  13. F. Soderlind, L. Selegard, P. Nordblad, K. Uvdul, and P. O. Kall, J. Sol-Gel Sci. Technol. 29, 253 (2009).
  14. Z. Cheong, H. Yang, L. Yi, and X. Xu, J. Mater. Electron 19, 442 (2008). https://doi.org/10.1007/s10854-007-9357-7
  15. A. A.Satter, H. M. Elsayed, and A. M. Faramawy, J. Magn. Magn. Mater. 412, 172 (2016). https://doi.org/10.1016/j.jmmm.2016.03.090
  16. Y. R. Uhm, H. M. Lee, G. J. Lee, and C. K. Rhee, J. Magn. 14, 75 (2009). https://doi.org/10.4283/JMAG.2009.14.2.075
  17. C. S. Kim, B. K. Min, S. Y. An, and Y. R. Uhm, J. Magn. Magn. Mater. 239, 54 (2002). https://doi.org/10.1016/S0304-8853(01)00625-4
  18. A. C. Morais, V. K. Garg, A. C. Oliveira, L. B. Silveira, J. G. Santos, M. M. A. Rodrigues, and A. C. Tedesco, Hyper. Interact. 190, 269 (2009).
  19. S. Morup, M. F. Hansen, and C. Franden, Belistein J. Nanotechnol. 1, 182 (2010). https://doi.org/10.3762/bjnano.1.22

Cited by

  1. Enhancement in Curie Temperature of Yttrium Iron Garnet by Doping with Neodymium vol.11, pp.9, 2018, https://doi.org/10.3390/ma11091652