DOI QR코드

DOI QR Code

Electromagnetic Actuator with Novel Electric Brake for Circuit Breaker

  • Bae, Byungjun (Agency for Defense Development) ;
  • Kim, Minjae (Department of Mechanical Engineering, Myongji University)
  • Received : 2016.03.16
  • Accepted : 2016.08.18
  • Published : 2016.09.30

Abstract

At the stroke end of an electromagnetic circuit breaker, the high speed of the mover makes a huge impact at the contact point, which induces the rebound problem of the mover that causes a breaker failure. Thus, a speed reduction equipment is required to address such problems. This study suggests to use an electric brake reduces the speed at the end of the stroke. The proposed circuit breaker which adopts the electric brake has a variable speed reduction function such that the continued rebound phenomenon ceases to occur. The electric brake is designed by the Finite Element Method (FEM) and the circuit and motion equations are solved using Time Difference Method (TDM). The comparisons between the simulation and experiments demonstrated the usefulness and validity of this study.

Keywords

References

  1. J. H. Kang, D. K. Shin, H. K. Jung, K. H. Kim, W. Y. Lee, and J. S. Chun, International Symposium on Linear Drives for Industry Applications (LDIA) (2005) pp. 359-362.
  2. J. H. Kang, Ph.D. Thesis, Seoul National University, Korea (2009).
  3. D. J. Cho, S. K. Hong, D. K. Woo, and H. K. Jung, International Conference on Electrical Machines and Systems (ICEMS) (2011) pp. 1-4.
  4. E. Dullni and S. F. Zhao, International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV) (2010) pp. 463-466.
  5. W. Shujuan, R. Wanbin, and F. Weiwei, Electric Contacts (2004) pp. 453-458.
  6. L. Sun, Z. Wang, S. He, Y. Geng, and Z. Liu, Proc. International Conference on Electric Power Equipment- Switching Technology (ICEPE-ST) (2014) pp. 1-4.
  7. B. T. Bae, S. H. Lee, J. E. Park, J. Y. Kim, and J. H. Kim, Proceeding of KSME (2012) pp. 2226-2229.
  8. J. S. Kim, S. M. Kim, J. H. Jeong, S. C. Jeong, and J. W. Lee, Int. J. Automot. Techn. 17, 865 (2016). https://doi.org/10.1007/s12239-016-0084-z
  9. R. E. Kim, M. S. Thesis, Seoul National University, Korea (2009).
  10. D. K. Shin, M.S. Thesis, Seoul National University, Korea (2006).
  11. C. H. Lee, B. H. Shin, and Y. B. Bang, IEEE Trans. Ind. Eng. 63, 1655 (2016). https://doi.org/10.1109/TIE.2015.2494006
  12. S. K. Hong, B. J. Bae, D. J. Cho, and H. K. Jung, International Conference on Electrical Machines and Systems (ICEMS) (2010) pp. 1573-1577.
  13. W. J. Park, K. Y. Ahn, and H. I. Yang, Proceeding of KSME (2010) pp. 956-961.
  14. H. C. Yi, K. I. Hwang, J. H. Kim, and J. H. Kim, J. Magn. 18, 466 (2013). https://doi.org/10.4283/JMAG.2013.18.4.466
  15. D. H. Im, Finite element method in the electric field, Dong Myeong Publishers, Seoul (1987).
  16. S. J. Salon, Finite element analysis of electrical machines, Kluwer academic publishers, Boston (1995).
  17. A. J. Davies, The finite element method: a first approach, Oxford University Press, New York (1980).
  18. H. H. Woodson and J. Melcher, Electromechanical Dynamics Part II: Fields, Forces, and Motion, Wiley, New York (1986).
  19. E. Dong, T. Qin, Y. Wang, X. Duan, and J. Zou, IEEE Trans. Pow. Del. 63, 2594 (2013).
  20. Z. Wang, L. Sun, S. He, Y. Geng, and Z. Liu, IEEE Trans. Magn. 50, 129 (2014).
  21. L. Wei, F. Chun-en, Z. Lili, and W. Jun, Discharges and Electrical Insulation in Vacuum (ISDEIV) (2008) pp. 125-128.
  22. F. Liu, H. Guo, Q. Yang, L. Zhang, and W. Yan, IEEE Trans. Appl. Supercond. 14, 1918 (2004). https://doi.org/10.1109/TASC.2004.830931