DOI QR코드

DOI QR Code

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang (School of Mechanical Engineering, Zhengzhou University) ;
  • Sun, Jinji (School of Instrumentation Science & Opto-electronics Engineering, Science and Technology on Inertial Laboratory, Beihang University) ;
  • Han, Weitao (CRRC Qingdao Sifang Co., Ltd.) ;
  • Ren, Hongliang (Biomedical Engineering, National University of Singapore)
  • Received : 2016.03.11
  • Accepted : 2016.07.12
  • Published : 2016.09.30

Abstract

To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Keywords

References

  1. J. J. Sun, Y. Ren, and J. C. Fang, J. Magn. Magn. Mater. 323, 2103 (2011). https://doi.org/10.1016/j.jmmm.2011.02.020
  2. M. H. Kimman, H. H. Langen, and R. H. Munning Schmidt, Mechantronics 20, 224 (2010). https://doi.org/10.1016/j.mechatronics.2009.11.010
  3. Y. Ren and J. C. Fang, IEEE Trans. Ind. Electron. 61, 1539 (2014). https://doi.org/10.1109/TIE.2013.2257147
  4. E. Q. Tang and B. C. Han, Math. Probl. Eng. 2013, 1 (2013).
  5. B. C. Han, S. Q. Zheng, X. Wang, and Q. Yuan, IEEE Trans. Magn. 48, 1959 (2012). https://doi.org/10.1109/TMAG.2011.2180731
  6. J. C. Fang, J. J. Sun, Y. L. Xu, and X. Wang, IEEE Trans. Magn. 45, 5319 (2009). https://doi.org/10.1109/TMAG.2009.2024687
  7. J. C. Fang, X. Wang, T. Wei, E. Q. Tang, and Y. H. Fan, IEEE Trans. Magn. 48, 2293 (2012). https://doi.org/10.1109/TMAG.2012.2192131
  8. J. J. Sun and J. C. Fang, J. Magn. Magn. Mater. 323, 202 (2011). https://doi.org/10.1016/j.jmmm.2010.08.053
  9. Y. L. Xu, Y. Q. Dun, X. H. Wang, and Y. Kong, IEEE Trans. Magn. 42, 1363 (2006). https://doi.org/10.1109/TMAG.2006.871396
  10. C. H. Park, S. K. Choi, J. H. Ahn, S. Y. Ham, and S. Kim, J. Magn. 18, 302 (2013). https://doi.org/10.4283/JMAG.2013.18.3.302
  11. J. C. Fang, J. J. Sun, H. Liu, and J. Q. Tang, IEEE Trans. Magn. 46, 4034 (2010). https://doi.org/10.1109/TMAG.2010.2074206
  12. K. Tsuchida, M. Takemoto, and S. Ogasawara, Proc. Int. Conf. Elect. Mach. Syst. 1695 (2010).
  13. E. Y. Hou and K. Liu, IEEE Trans. Magn. 47, 4725 (2011). https://doi.org/10.1109/TMAG.2011.2160649
  14. W. Y. Zhang and H. Q. Zhu, Int. J. Precis. Eng. Manuf. 15, 661 (2014). https://doi.org/10.1007/s12541-014-0385-y
  15. E. Y. Hou and K. Liu, IEEE Trans. Magn. 49, 4900 (2013). https://doi.org/10.1109/TMAG.2013.2244098
  16. E. Y. Hou and K. Liu, IEEE Trans. Magn. 48, 38 (2012). https://doi.org/10.1109/TMAG.2011.2167018