DOI QR코드

DOI QR Code

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il (Motor R&D Group, Digital Appliances, Samsung Electronics) ;
  • Hong, Jung-Pyo (Department of Automotive Engineering, Hanyang University)
  • Received : 2016.06.07
  • Accepted : 2016.07.14
  • Published : 2016.09.30

Abstract

In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

Keywords

References

  1. F. Crescimbini, A. Lidozzi, and L. Solero, IEEE Trans. Ind. Electron. 59, 2678 (2012). https://doi.org/10.1109/TIE.2011.2160513
  2. T. Raminosoa, B. Blunier, D. Fodorean, and A. Miraoui, IEEE Trans. Ind. Electron. 57, 2988 (2010).
  3. B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, IEEE Trans. Ind. Applicat. 39, 811 (2003). https://doi.org/10.1109/TIA.2003.810658
  4. A. Borisavljevic, H. Polinder, and J. A. Ferreira, IEEE Trans. Ind. Electron. 57, 220 (2010). https://doi.org/10.1109/TIE.2009.2030762
  5. N. Bianchi, S. Bolognani, and F. Luise, IEEE Trans. Ind. Applicat. 40, 1570 (2004). https://doi.org/10.1109/TIA.2004.836173
  6. A. Binder, T. Schneider, and M. Klohr, IEEE Trans. Ind. Applicat. 42, 1031 (2006). https://doi.org/10.1109/TIA.2006.876072
  7. Jason M. Yon, Phil H. Mellor, R. Wrobel, Julian D. Booker, and Stephen G. Burrow, IEEE Trans. Energy Convers. 27, 646 (2012). https://doi.org/10.1109/TEC.2012.2202232
  8. A. M. EL-Refaie, M. R. Shah, R. Qu, and T. M. Jahns, IEEE Trans. Ind. Applicat. 44, 1522 (2008). https://doi.org/10.1109/TIA.2008.2002207
  9. H. W. Cho, S. M. Jang, and S. K. Choi, IEEE Trans. Magn. 42, 3521 (2006). https://doi.org/10.1109/TMAG.2006.879086
  10. F. Z. Zhou, J. X. Shen, and W. Z. Fei, UPEC2006, 734 (2006).
  11. G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, IEEE Trans. Ind. Electron. 59, 803 (2012). https://doi.org/10.1109/TIE.2011.2151825
  12. R. Schiferl, Ph. D. thesis, Univ. of Wisconsin-Madison, USA (1987).
  13. Z. Han, H. Yang, and Y. Chen, Int. Conf. Electrical Machines and Systems (ICEMS), 1 (2009).
  14. J. K. Kim, S. Y. Kwak, S. M. Cho, H. K. Jung, T. K. Chung, and S. Y. Jung, IEEE Trans. Magn. 42, 1023 (2006). https://doi.org/10.1109/TMAG.2006.872513
  15. A. M. EL-Refaie, R. Manke, and T. M. Jahns, IEEE Trans. Ind. Applicat. 40, 717 (2004). https://doi.org/10.1109/TIA.2004.827470
  16. E. C. Lovelace, Ph. D. thesis, MIT, USA (2000).
  17. S. I. Kim, J. H. Bhan, J. P. Hong, and K. C. Lim, in Conf. Rec. IEEE-IAS Annu. Meeting, CD-ROM (2006).
  18. S. Morimoto and Y. Takeda, Elec. Eng. in Japan 131, 1403 (2000).
  19. Y. Honda, T. Higaki, S. Morimoto, and Y. Takeda, IEE Proc. Electr. Power Appl. 145, 119 (1998). https://doi.org/10.1049/ip-epa:19981728
  20. S. I. Kim, G. H. Lee, J. P. Hong, and T. U. Jung, IEEE Trans. Magn. 44, 1590 (2008). https://doi.org/10.1109/TMAG.2007.916136
  21. S. H. Lee, J. P. Hong, J. Y. Lee, Y. K. Kwon, Y. S. Jo, S. K. Baik, and J. D. Lee, IEEE Trans. Appl. Supercond. 17, 1541 (2007). https://doi.org/10.1109/TASC.2007.897207
  22. B. H. Bae and S. K. Sul, in Proc. IEEE Int. Electr. Mach. Drives Conf. 2, 656 (2003).
  23. S. Morimoto, Y. Takeda, and T. Hirasa, IEEE Trans. Power Electron. 5, 133 (1990). https://doi.org/10.1109/63.53150
  24. B. H. Lee, S. O. Kwon, T. Sun, J. P. Hong, G. H. Lee, and J. Hur, IEEE Trans. Magn. 47, 1066 (2011). https://doi.org/10.1109/TMAG.2010.2099647
  25. N. Urasaki, T. Senjyu, and K. Uezato, IEEE Trans. Energy Convers. 18, 41 (2003). https://doi.org/10.1109/TEC.2002.808329
  26. C. Mi, G. R. Selmon, and R. Bonert, IEEE Trans. Ind. Applicat. 39, 734 (2003). https://doi.org/10.1109/TIA.2003.810635
  27. F. Bernal, A. Cerrada, and R. Faure, IEEE Trans. Ind. Applicat. 37, 1265 (2001). https://doi.org/10.1109/28.952501
  28. M. Sanada, Y. Inoue, and S. Morimoto, in Proc. ECCE2011, 4189 (2011).
  29. T. Ishikawa, S. Sato, S. Takeguchi, and A. Matsuo, IEEE Trans. Magn. 48, 3132 (2012). https://doi.org/10.1109/TMAG.2012.2203333
  30. S. I. Kim, Y. K. Kim, G. H. Lee, and J. P. Hong, IEEE Trans. Magn. 48, 843 (2012). https://doi.org/10.1109/TMAG.2011.2174045
  31. H. Nam, K. H. Ha, J. J. Lee, J. P. Hong, and G. H. Kang, IEEE Trans. Magn. 39, 1472 (2003). https://doi.org/10.1109/TMAG.2003.810198
  32. N. Bernard, F. Martin, and M. E. Zaim, IEEE Trans. Energy Convers. 27, 624 (2012). https://doi.org/10.1109/TEC.2012.2199494
  33. R. Dhaouadi, K. Kubo, and M. Tobise, IEEE Trans. Ind. Applicat. 29, 919 (1993). https://doi.org/10.1109/28.245715
  34. T. Umeno and Y. Hori, IEEE Trans. Ind. Electron. 38, 363 (1991). https://doi.org/10.1109/41.97556