DOI QR코드

DOI QR Code

Squeezing Flow of Micropolar Nanofluid between Parallel Disks

  • Received : 2016.04.28
  • Accepted : 2016.06.23
  • Published : 2016.09.30

Abstract

In the present study, squeezing flow of micropolar nanofluid between parallel infinite disks in the presence of magnetic field perpendicular to plane of the disks is taken into account. The constitutive equations that govern the flow configuration are converted into nonlinear ordinary differential with the help of suitable similarity transforms. HAM package BVPh2.0 has been employed to solve the nonlinear system of ordinary differential equations. Effects of different emerging parameters like micropolar parameter K, squeezed Reynolds number R, Hartmann number M, Brownian motion parameter Nb, thermophoresis parameter Nt, Lewis number Le for dimensionless velocities, temperature distribution and concentration profile are also discussed graphically. In the presence of strong and weak interaction (i.e. n = 0 and n = 0.5), numerical values of skin friction coefficient, wall stress coefficient, local Nusselt number and local Sherwood number are presented in tabulated form. To check the validity and reliability of the developed algorithm BVPh2.0 a numerical investigation is also a part of this study.

Keywords

References

  1. K. R. Rajagopal, Acta Sin. Indica 18, 1 (1982).
  2. K. R. Rajagopal, Navier-Stokes Equation and Related Nonlinear Problems, A. Sequira, ed., Plenum Press, New York (1995) pp. 273-278.
  3. K. R. Rajagopal, A. Z. Szeri, and W. Troy, Int. J. Non-Linear Mech. 21, 279 (1986). https://doi.org/10.1016/0020-7462(86)90035-1
  4. C. Fetecau, C. Fetecau, and D. Vieru, Acta Mech. 189, 53 (2007). https://doi.org/10.1007/s00707-006-0407-7
  5. T. Hayat, Z. Abbas, and N. Ali, Phys. Lett. A 372, 4698 (2008). https://doi.org/10.1016/j.physleta.2008.05.006
  6. M. Ayub, A. Rasheed, and T. Hayat, Int. J. Eng. Sci. 41, 2091 (2003). https://doi.org/10.1016/S0020-7225(03)00207-6
  7. T. Hayat, R. Ellahi, and S. Asghar, Chem. Commun. 193, 1 (2008).
  8. M. Sajid, T. Hayat, S. Asghar, and K. Vajravelu, Arch. Appl. Mech. 78, 127 (2008). https://doi.org/10.1007/s00419-007-0146-9
  9. A. C. Eringen, J. Math. 16, 1 (1966).
  10. T. Ariman, M. A. Turk, and N. D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974). https://doi.org/10.1016/0020-7225(74)90059-7
  11. M. A. Ezzat, M. I. Othman, and K. A. Helmy, Can. J. Phys. 77, 813 (1999). https://doi.org/10.1139/y99-083
  12. K. A. Helmy, H. F. Idriss, and S. E. Kassem, Can. J. Phys. 80, 166 (2002).
  13. D. A. S. Rees and I. Pop, IMA. J. Appl. Math. 61, 179 (1998). https://doi.org/10.1093/imamat/61.2.179
  14. S. K. Jena and M. N. Mathur, Int. J. Eng. 19, 1431 (1981). https://doi.org/10.1016/0020-7225(81)90040-9
  15. T. Hayat, Z. Abbas, and T. Javed, Phys. Lett. A 372, 637 (2008). https://doi.org/10.1016/j.physleta.2007.08.006
  16. G. S. Guram and A. C. Smith, Comput. Math. Appl. 6, 213 (1980).
  17. G. Ahmadi, Int. J. Eng. Sci. 14, 639 (1976). https://doi.org/10.1016/0020-7225(76)90006-9
  18. R. Nazar, N. Amin, D. Filip, and I. Pop, Int. J. Non-Linear Mech. 39, 1227 (2004). https://doi.org/10.1016/j.ijnonlinmec.2003.08.007
  19. H. S. Takhar, R. Bhargava, R. S. Agrawal, and A. V. S. Balaji, Int. J. Eng. Sci. 38, 1907 (2000). https://doi.org/10.1016/S0020-7225(00)00019-7
  20. S. Ishizawa, Bull. Jpn. Soc. Mech. Eng. 9, 533 (1966). https://doi.org/10.1299/jsme1958.9.533
  21. R. J. Grimm, App. Sci. Res. 32, 149 (1976). https://doi.org/10.1007/BF00383711
  22. C. Y. Wang and L. T. Watson, App. Sci. Res. 35, 195 (1979). https://doi.org/10.1007/BF00382705
  23. R. Usha and R. Sridharan, Fluid Dyn. Res. 18, 35 (1999).
  24. M. M. Rashidi, H. Shahmohamadi, and S. Dinarvand, Math. Probl. Eng. 2008, 935095 (2008).
  25. S. U. S. Choi, Siginer, D. A. Wang, H. P. (Eds.), Developments and Applications of Non-Newtonian Flows, 231, 99 (1995).
  26. J. Buongiorno, J. Heat Transfer 128, 240 (2006). https://doi.org/10.1115/1.2150834
  27. M. Sheikholeslami and R. Ellahi, Applied Sciences 5, 294 (2015). https://doi.org/10.3390/app5030294
  28. M. Sheikholeslami and R. Ellahi, International Journal of Heat and Mass Transfer 89, 799 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110
  29. S. T. Mohyud-Din, Z. A. Zaidi, U. Khan, and N. Ahmed, Aerospace Science and Technology 46, 514 (2015). https://doi.org/10.1016/j.ast.2015.07.020
  30. N. Ahmed, S. T. Mohyud-Din, and S. M. Hassan, Aerospace Science and Technology 48, 53 (2016). https://doi.org/10.1016/j.ast.2015.10.022
  31. S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall, CRC Press, Boca Raton.
  32. S. J. Liao, Applied Mathematics and Computation 147, 499 (2004). https://doi.org/10.1016/S0096-3003(02)00790-7
  33. S. J. Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010). https://doi.org/10.1016/j.cnsns.2009.09.002
  34. U. Khan, N. Ahmed, and S. T. Mohyud-Din, Chemical Engineering Science 141, 17 (2016). https://doi.org/10.1016/j.ces.2015.10.032
  35. S. T. Mohyud-Din and S. I. U. Khan, Aerospace Science and Technology 48, 186 (2016). https://doi.org/10.1016/j.ast.2015.10.019