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Block cipher is one of the prominent and important elements in cryptographic systems and study on the minimal
construction is a major theme in the cryptographic research. Even and Mansour motivated by the study suggested a kind
of block cipher called the Even-Mansour scheme in the early 1990s. It is a very simple cipher with one permutation and
two secret keys. There have been many studies on the Even-Mansour scheme and security analysis of the scheme. We
explain the Even-Mansour scheme and simplify those attacks on the Even-Mansour scheme with mathematical language.
Additionally, we show that Pollard’'s rho attack to the discrete logarithm problem can be used to attack the
Even-Mansour scheme with the same complexity of the Pollard’s rho attack.

Even-Mansour 2% A=) 71eF3}

3 *
7138‘_

fu)

ABSTRACT

EEUTE YoAzE oA FEEAHA Fas FiolH 4*«1 ?Z% 7= Zﬂoﬂ e AT dmst ApellA F
FA T shuelrh HAiol Fxd Ha #AlS 2t
© 4% E5USE At Even-Mansour 22712 81 ]ﬂhL 7 0] HEE o
o]#]g Even-Mansour 2272} 19| ebdA] Ao #3t @ AFEo] o]Fo|#] gt} $-2li Even-Mansour 2~4S A

a1 o] 271e] FAW s 89l <lojE o]l wesleith I oR el oatRaE AT u Algste

2k
Pollard tho 343} 543+ AlAtEo 2 Pollard tho 3445 Even-Mansour 2279] &40l 483

PV b e ol

A
sk
dlo
o ©
o
S
i)

Key words : Block cipher, Minimal construction, Even-Mansour scheme, Security analysis,

Pollard’'s rho attack, Complexity

A5 o16d 89 229), FALF: 201649 109 79), * FeAREl7 |2

?ﬁ%’(zi}: 20161 129 149),
AR L0169 129 229)



86 FFHF=EA A16A A7ZE (2016. 12)

1. Introduction

Block cipher is a cryptographic primitive to
encrypt and decrypt messages applying
Shannon’s information theory [25]. DES(Data
Encryption Standard) is a kind of block cipher
with a Feistel-like structure and is the most
well-known element. It was standardized for
the United States in November 1976 [17]. DES
was considered to be insecure [6, 22, 23, 3, 4]
and a new block cipher called AES(Advanced
Encryption Standard) was standardized for the
United States in May 2002 [18]. And there
have been proposed many block ciphers such
as IDEA, MISTY, Camellia, KASUMI and
ARIA [21, 24, 2, 26, 201.

Even and Mansour suggested a kind of
much simpler block cipher called the
Even—-Mansour scheme in 1991 [15, 16]. It has
very simple structure with a publicly known
permutation and two secret Kkeys, a
prewhitening key and a postwhitening key,
respectively. Daemen attacked their scheme
using a CPA(Chosen Plaintext Attack) in 1991
[10]. After that, Biryukov and Wagner
suggested a KPA(Known Plaintext Attack) in
2000 [7]. Dunkelman, Keller and Shamir
improved the complexity of the Biryukov and
Wagner's attack using a KPA in 2012 [13].
Lately, there were presented studies on the
generalization of the Even-Mansour scheme
and security analysis on those schemes [1, 5,
8, 9, 11, 12, 14, 19].

We analyze these attacks on the
Even-Mansour scheme and reinterpret them

with different approaches against the original

attacks. We formalize those attacks with
mathematical language and compare those

attacks with each other.

The remainder of this paper is organized as
follows. In Section 2, we introduce the
Even-Mansour scheme. In Section 3, we
simplify attacks on the Even—-Mansour scheme
and compare them with each other. We
introduce an open problem additionally. We

conclude in Section 4.

2. The Even—-Mansour scheme

The Even-Mansour scheme E': F,—F, we
consider is given as follows [15, 16]:

E(P)=F(P® k) Dk, (1)
where F finite field of order 2", k,,k,: n-bit
keys, F': bijection in FQ,,, P n-bit plaintext
and @®: addition in a field F, (. e. @ is
equivalent to exclusive OR operation). We call
k, a prewhitening key and k, a postwhitening

key.

Data complexity is the number of queries to
the E -oracle and queries to the E '-oracle.
Let D be the data complexity. Time
complexity is the number of queries to the F
-oracle and queries to the F '-oracle. Let T
be the time complexity. The £ -oracle returns
E(P) for a given message PEF,, and the F
-oracle returns F(x) for a given input

rEF,. The other oracles return each value

similarly. Let M be the memory and N=2".



3. Simplification of attacks on the
Even—-Mansour scheme

There have been proposed many papers on
attacks of the Even-Mansour scheme. Joan
Daemen attacked the Even-Mansour scheme in
the paper 'Limitations of the Even-Mansour
Construction’ at Asiacrypt 1991 [10]. He used a
CPA. Alex Biryukov and David Wagner
improved Joan Daemen’s result in the paper
"Advanced Slide Attacks’ at Eurocrypt 2000 [7].
They made a KPA providing fixed complexity
and fixed memory according to plaintext size.
Orr Dunkelman, Nathan Keller and Adi Shamir
presented another KPA with flexible complexity
and flexible memory according to plaintext size
in the paper 'Minimalism in Cryptography: The
Even—-Mansour Scheme Revisited’ at Eurocrypt
2012 [13]. We simplify all these attacks on the
Even-Mansour scheme and apply Pollard’s rho

attack to this scheme.

3.1 Guess and determine

We can attack the Even-Mansour scheme
with a trivial method. After we guess a

prewhitening key k;, we get the postwhitening
key k, = C,®F(P,®k,) using the first key k,, a
pair (P,C,) and F(P,®k,) where C,=FE(P,)
for some P, € F,,. We can check the correctness
of the guessing key k, and the subsequent key
k, wusing the other pair (P,C,) where
E(P,)) = F(P,®k,)Dk,. If we guess all keys in
k., we get the proper key. The method is given

as Algorithm 1:
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Algorithm 1 Guess and Determine

L. For arbitrary P, P,(P, = P))EF,,,
get C,=FE(P,) and C,=E(PR).

2. For 1=1,2,---,V, do the following:
1) Guess k, EF,.

2) Calculate k, EF,. such that
ky, = C\®B F(P,Dk,).
3) Check guessing keys kj,k, for
C, = F(P,®k,) Bk, with Cy=E(P,).

Complexity and memory are given as follows.

Complexity and Memory

D: O(1), T: O(N), M: O(1)

In the above method, both D and M are given
O(1). But this is not an applicable attack
because 7 is given O(N). If n=280, the
Even-Mansour scheme is secure against this
attack.

3.2 Differential cryptanalysis

We can find keys ki,k, as follows:

Define a new element AE(P)=E(PHA)
©E(P) for some P,AEF,. Then we get
AE(P) = F(P©ADk) DF(PDk) = AF (P®k)
where AF(P)=F(P®A)HF(P). We can use
this property to get correct keys k,k, after

defining two sets, S,z and S, respectively.

We need two sets about AE(P) and AF(P),
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respectively. Define a set S,,={AE(P,)|P,EF,,
i=1,2,-,2'} and a set S,,={AF(P)|IPEF,,
i=1,2,---,2"" "}, respectively. Then we can find
P,(EF,) in the set S, and P,(EF,) in the
set S,p such that AE(P)=AF(P). In this
case, we get the key k =FPODP with a high
probability. The concrete method is given as
Algorithm 2:

Algorithm 2 Differential cryptanalysis

1. For arbitrary PEF,,, get C'= E(P).

2. For i=1,2,--,2%, get AE(P,) and store
(P.AE(P,)) in Tab 1 after sorting AE(P,).

3. For i=1,2,--,2""% get AF(P,) and

compare it with the Tab 1.

4. For each collision with AE(P,) :AF(})j),
check the guess k, = FP.®P; and

ky = AE(P,)DAF(P;) for
C=F(PDk,)®k, with C=E(P).

Using the above method, we can attack the
Even-Mansour scheme with the following

complexity and memory.

Complexity and Memory

D: 0o(2Y), T: 0(2"~ %), M: O(min{2%2"%})

3.3 Advanced slide attack

We can find keys k,k, as follows:

We know that E(P)®F(P,dA) = E(P,)®

F(P®A) where P&P,=k®A for some
P, Py AEF,. Define =P y=P®A. Then
we get Ela)DF(y)=EydA)D FladA). Let
c=z®y®A. Then we get Elz)DF(y)=
Elz®c)®F(y®c). We can use this property to
get correct keys k;,k,.

Define  G(z,y) = E(x)®F(y). From the
above fact, G(z,y)=G(zDc,yPc). Define
Sty = LGa®i,y®i)lz,yE Fp,i=0,1,-,V/N}.
Then we can find (z;y),(z;y;) such that
Glzx;y,) = G(:L’j,yj) where (z,,y;) = (x®i,yPi).
In this case, we get the key k, =z;®y, with a
high  probability  from ki =2,@r,BA =
cDA =z,Dy,. We can attack the

Even-Mansour scheme with the following

complexity and memory.

Complexity and Memory

D: O(V/N), T: O(v/N), M: O(\/N)

In fact, this method doesn’t give a trade-off
between D and 7 owing to the function
G(z,y).

3.4 Slidex attack

The slidex attack is an improved method of
the advanced slide attack. We can find key
using the original slidex attack as Algorithm 3
[13]:



Algorithm 3 Advanced slide attack

1. For i=1,2,--,2", get AE(P).
2. For 1=1,2,-+,2"" choose A, and

do the following:
1) Get F(E@Al)izlﬁzuﬂd.
2) Store (P, E(P)®F(P,OA,))) after
sorting E(P,)BF(PBA,).

3. Search for a collision such that
EP)SF(POA)=EP)DF(PDHA)
and check the guess k =P P,®POA,
ky=E(P,)® F(P®A,) for

C, = F(P,®k) Pk, with C,=E(P)).

Then we can attack the Even—-Mansour
scheme with the following complexity and

memory.

Complexity and Memory

D: o2Y), T: 02"~ %), M: O(min{2%,2""%})

3.5 Pollard’s rho attack

Pollard’s rho attack is a probabilistic method.

We can find keys k;,k, as follows:

Choose arbitrary elements z,y,E F,, and let
c=z,Py,. Define G(z,y) = E(z)®F(y). Define
an element (7, ,,y,,,)=(G(z,y,),G(z,y,)®c)
for an integer i > 0. Then we can find a pair
(2129;41) for z;=G(z,y;) with a high
probability in the following pairs:

{(z020):(21523) (2 2y sy )}

We can attack the Even-Mansour scheme
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with the following complexity and memory.

Complexity and Memory
D: O(V/N), T: O(VN), M: O(1)

3.6 Comparison and open problem

Table 1 gives the result on attacks of the
Even-Mansour scheme. According to Table 1,
we can attack the Even-Mansour scheme with
flexible number of known plaintexts using the
Slidex attack. Pollard’s rho

randomized attack with a negligible amount of

attack is a

storage. To make any attack on the
Even-Mansour scheme feasible, D must be
sufficiently small size. Therefore we can ask

the following question:

Is there any attack with D< O(v/N)
DT=0O(N), M=0(1)

"Guess and Determine”)?

satisfying (except

<Table 1> Comparison of attacks on the

Even-Mansour scheme

Attack D T M Attack
model
Guess & 1 o0) | o) | o) | Kpa
Determine
:, d
Differential| 0(2') |02 ") 0;2’?’5}[)2 oA
Slide | O(VN)|O(VN)| O(v/N)| KPA
Y d|
Slidex | 0(2%) |02~ 0;7*1%)2 KPA
Pollard | O(vN)| O(VN)| 0(1) adggtAwe




90 FFHA=EA A16A A7Z (2016. 12)

4, Conclusion

There have been presented studies on the
Even—Mansour scheme and generalization of
the Even—-Mansour scheme. We introduced the
Even-Mansour scheme and simplified attacks
on the scheme. We can get the essential
principle of attack on the Even-Mansour
attacks  with
Additionally, we

scheme after simplifying

mathematical language.
applied Pollard’s rho attack to the scheme. We
were able to attack the Even-Mansour scheme
with the same complexity of Pollard’s rho
attack on the discrete logarithm problem. It
would be interesting to find a method with
feasible implementation of the Even-Mansour
scheme and to find an attack with

D< O(\/N) for DT=O(N), M= 0(1).
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