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요 약

Block cipher is one of the prominent and important elements in cryptographic systems and study on the minimal

construction is a major theme in the cryptographic research. Even and Mansour motivated by the study suggested a kind

of block cipher called the Even-Mansour scheme in the early 1990s. It is a very simple cipher with one permutation and

two secret keys. There have been many studies on the Even-Mansour scheme and security analysis of the scheme. We

explain the Even-Mansour scheme and simplify those attacks on the Even-Mansour scheme with mathematical language.

Additionally, we show that Pollard's rho attack to the discrete logarithm problem can be used to attack the

Even-Mansour scheme with the same complexity of the Pollard's rho attack.

Even-Mansour 스킴 공격방법의 간략화

김 홍 태*

ABSTRACT

블록암호는 암호시스템 중에서 두드러지면서 중요한 부분이며, 최소의 구조를 갖는 것에 관한 연구는 암호학 연구에서 주

요한 주제 중의 하나이다. 최소의 구조에 관해 관심을 갖던 Even과 Mansour는 1990년대 초반에 Even-Mansour 스킴이라고

불리는 일종의 블록암호를 제안하였다. Even-Mansour 스킴은 하나의 치환과 두 개의비밀키를 가지는매우 간단한 암호이다.

이러한 Even-Mansour 스킴과 그의 안전성 분석에 관한 많은 연구들이 이루어져 왔다. 우리는 Even-Mansour 스킴을 설명하

고 이 스킴의 공격방법에 대해 수학적인 언어를 이용하여 단순화한다. 추가적으로, 우리는 이산로그를 공격할 때 사용하는

Pollard rho 공격과 동일한 계산량으로 Pollard rho 공격을 Even-Mansour 스킴의 공격에 적용할 수 있음을 보인다.
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1. Introduction

Block cipher is a cryptographic primitive to

encrypt and decrypt messages applying

Shannon's information theory [25]. DES(Data

Encryption Standard) is a kind of block cipher

with a Feistel-like structure and is the most

well-known element. It was standardized for

the United States in November 1976 [17]. DES

was considered to be insecure [6, 22, 23, 3, 4]

and a new block cipher called AES(Advanced

Encryption Standard) was standardized for the

United States in May 2002 [18]. And there

have been proposed many block ciphers such

as IDEA, MISTY, Camellia, KASUMI and

ARIA [21, 24, 2, 26, 20].

Even and Mansour suggested a kind of

much simpler block cipher called the

Even-Mansour scheme in 1991 [15, 16]. It has

very simple structure with a publicly known

permutation and two secret keys, a

prewhitening key and a postwhitening key,

respectively. Daemen attacked their scheme

using a CPA(Chosen Plaintext Attack) in 1991

[10]. After that, Biryukov and Wagner

suggested a KPA(Known Plaintext Attack) in

2000 [7]. Dunkelman, Keller and Shamir

improved the complexity of the Biryukov and

Wagner's attack using a KPA in 2012 [13].

Lately, there were presented studies on the

generalization of the Even-Mansour scheme

and security analysis on those schemes [1, 5,

8, 9, 11, 12, 14, 19].

We analyze these attacks on the

Even-Mansour scheme and reinterpret them

with different approaches against the original

attacks. We formalize those attacks with

mathematical language and compare those

attacks with each other.

The remainder of this paper is organized as

follows. In Section 2, we introduce the

Even-Mansour scheme. In Section 3, we

simplify attacks on the Even-Mansour scheme

and compare them with each other. We

introduce an open problem additionally. We

conclude in Section 4.

2. The Even-Mansour scheme

The Even-Mansour scheme   

→


 we

consider is given as follows [15, 16]:

    ⊕⊕ (1)

where 

 : finite field of order  ,  : -bit

keys,  : bijection in 

 ,  : -bit plaintext

and ⊕: addition in a field 

 (i. e. ⊕ is

equivalent to exclusive OR operation). We call

 a prewhitening key and  a postwhitening

key.

Data complexity is the number of queries to

the  -oracle and queries to the  -oracle.

Let  be the data complexity. Time

complexity is the number of queries to the 

-oracle and queries to the  -oracle. Let 

be the time complexity. The  -oracle returns

  for a given message ∈

 and the 

-oracle returns   for a given input

∈

 . The other oracles return each value

similarly. Let  be the memory and .
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3. Simplification of attacks on the

Even-Mansour scheme

There have been proposed many papers on

attacks of the Even-Mansour scheme. Joan

Daemen attacked the Even-Mansour scheme in

the paper 'Limitations of the Even-Mansour

Construction' at Asiacrypt 1991 [10]. He used a

CPA. Alex Biryukov and David Wagner

improved Joan Daemen's result in the paper

'Advanced Slide Attacks' at Eurocrypt 2000 [7].

They made a KPA providing fixed complexity

and fixed memory according to plaintext size.

Orr Dunkelman, Nathan Keller and Adi Shamir

presented another KPA with flexible complexity

and flexible memory according to plaintext size

in the paper 'Minimalism in Cryptography: The

Even-Mansour Scheme Revisited' at Eurocrypt

2012 [13]. We simplify all these attacks on the

Even-Mansour scheme and apply Pollard's rho

attack to this scheme.

3.1 Guess and determine

We can attack the Even-Mansour scheme

with a trivial method. After we guess a

prewhitening key , we get the postwhitening

key  ⊕⊕ using the first key , a

pair  and ⊕ where  

for some ∈

 . We can check the correctness

of the guessing key  and the subsequent key

 using the other pair  where

 ⊕⊕. If we guess all keys in



 , we get the proper key. The method is given

as Algorithm 1:

Algorithm 1 Guess and Determine

1. For arbitrary ≠∈

 ,

get    and    .

2. For   ⋯, do the following:

1) Guess ∈

 .

2) Calculate ∈

 such that

 ⊕⊕ .

3) Check guessing keys  for

 ⊕⊕ with   .

Complexity and memory are given as follows.

Complexity and Memory

 :  ,  :  ,  : 

In the above method, both  and  are given

 . But this is not an applicable attack

because  is given  . If  , the

Even-Mansour scheme is secure against this

attack.

3.2 Differential cryptanalysis

We can find keys  as follows:

Define a new element  ⊕∆

⊕  for some △∈

 . Then we get

 ⊕∆⊕⊕ ⊕  ⊕

where  ⊕∆⊕  . We can use

this property to get correct keys  after

defining two sets,  and , respectively.

We need two sets about  and  ,
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respectively. Define a set  ∈



  ⋯ and a set   ∈



  ⋯, respectively. Then we can find

∈

  in the set  and  ∈


  in the

set  such that    . In this

case, we get the key  ⊕ with a high

probability. The concrete method is given as

Algorithm 2:

Algorithm 2 Differential cryptanalysis

1. For arbitrary ∈

 , get   .

2. For   ⋯, get   and store

 in Tab 1 after sorting   .

3. For   ⋯, get  and

compare it with the Tab 1.

4. For each collision with   ,

check the guess  ⊕ and

  ⊕ for

 ⊕⊕ with   .

Using the above method, we can attack the

Even-Mansour scheme with the following

complexity and memory.

Complexity and Memory

 :  ,  :  ,  : 

3.3 Advanced slide attack

We can find keys  as follows:

We know that ⊕⊕∆  ⊕

⊕∆ where ⊕ ⊕∆ for some

△∈

 . Define   ⊕∆. Then

we get ⊕⊕∆⊕⊕∆ . Let

  ⊕⊕∆. Then we get ⊕ 

⊕⊕⊕ . We can use this property to

get correct keys  .

Define  ⊕ . From the

above fact,  ⊕⊕ . Define

 ⊕⊕∈

  ⋯.

Then we can find  such that

  where   ⊕⊕ .

In this case, we get the key  ⊕ with a

high probability from  ⊕⊕∆

⊕∆⊕ . We can attack the

Even-Mansour scheme with the following

complexity and memory.

Complexity and Memory

 :   ,  :   ,  :  

In fact, this method doesn't give a trade-off

between  and  owing to the function

 .

3.4 Slidex attack

The slidex attack is an improved method of

the advanced slide attack. We can find key

using the original slidex attack as Algorithm 3

[13]:
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Attack   
Attack

model

Guess &

Determine
   KPA

Differential      
d

  
CPA

Slide       KPA

Slidex      
d

  
KPA

Pollard     
adaptive

CPA

<Table 1> Comparison of attacks on the

Even-Mansour scheme

Algorithm 3 Advanced slide attack

1. For   ⋯, get  .

2. For   ⋯, choose  and

do the following:

1) Get ⊕∆  ⋯
 .

2) Store ⊕⊕∆ after

sorting ⊕⊕∆ .

3. Search for a collision such that

⊕⊕∆ ⊕⊕∆

and check the guess  ⊕⊕∆,

 ⊕⊕∆ for

 ⊕⊕ with   .

Then we can attack the Even-Mansour

scheme with the following complexity and

memory.

Complexity and Memory

 :  ,  :  ,  : 

3.5 Pollard’s rho attack

Pollard’s rho attack is a probabilistic method.

We can find keys  as follows:

Choose arbitrary elements ∈

 and let

  ⊕. Define  ⊕ . Define

an element  ⊕

for an integer  ≥ . Then we can find a pair

 for   with a high

probability in the following pairs:

⋯ 


We can attack the Even-Mansour scheme

with the following complexity and memory.

Complexity and Memory

 :   ,  :   ,  : 

3.6 Comparison and open problem

Table 1 gives the result on attacks of the

Even-Mansour scheme. According to Table 1,

we can attack the Even-Mansour scheme with

flexible number of known plaintexts using the

Slidex attack. Pollard’s rho attack is a

randomized attack with a negligible amount of

storage. To make any attack on the

Even-Mansour scheme feasible,  must be

sufficiently small size. Therefore we can ask

the following question:

Is there any attack with ≪ 

satisfying   ,  (except

"Guess and Determine")?
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4. Conclusion

There have been presented studies on the

Even-Mansour scheme and generalization of

the Even-Mansour scheme. We introduced the

Even-Mansour scheme and simplified attacks

on the scheme. We can get the essential

principle of attack on the Even-Mansour

scheme after simplifying attacks with

mathematical language. Additionally, we

applied Pollard's rho attack to the scheme. We

were able to attack the Even-Mansour scheme

with the same complexity of Pollard's rho

attack on the discrete logarithm problem. It

would be interesting to find a method with

feasible implementation of the Even-Mansour

scheme and to find an attack with

≪  for   ,  .
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