DOI QR코드

DOI QR Code

Association of the Single Nucleotide Polymorphisms in RUNX1, DYRK1A, and KCNJ15 with Blood Related Traits in Pigs

  • Lee, Jae-Bong (Korea Zoonosis Research Institute (KoZRI), Chonbuk National University) ;
  • Yoo, Chae-Kyoung (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Hee-Bok (National Institute of Animal Science, Rural Development Administration) ;
  • Cho, In-Cheol (National Institute of Animal Science, Rural Development Administration) ;
  • Lim, Hyun-Tae (Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2016.05.03
  • Accepted : 2016.08.03
  • Published : 2016.12.01

Abstract

The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an $F_2$ resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the $F_2$ intercross population. Among them, the MCV level was highly significant (nominal $p=9.8{\times}10^{-9}$) in association with the DYRK1A-SNP1 (c.2989 G$F_2$ intercross, our approach has limited power to distinguish one particular positional candidate gene from a QTL region.

Keywords

References

  1. Adamo, L., O. Naveiras, P. L. Wenzel, S. McKinney-Freeman, P. J. Mack, J. Gracia-Sancho, A. Suchy-Dicey, M. Yoshimoto, M. W. Lensch, M. C. Yoder, G. Garcia-Cardena, and G. Q. Daley. 2009. Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131-1135. https://doi.org/10.1038/nature08073
  2. Altafaj, X., M. Dierssen, C. Baamonde, E. Marti, J. Visa, J. Guimera, M. Oset, J. R. Gonzalez, J. Florez, C. Fillat, and X. Estivill. 2001. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10:1915-1923. https://doi.org/10.1093/hmg/10.18.1915
  3. Asou, N. 2003. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit. Rev. Oncol. Hematol. 45:129-150. https://doi.org/10.1016/S1040-8428(02)00003-3
  4. Bain, B. J. 1995. Blood Cells: A Practical Guide. 2th edn. Wiley Blackwell, Chicester, West Sussex, UK.
  5. Cho, I. C., H. B. Park, C. K. Yoo, G. J. Lee, H. T. Lim, J. B. Lee, E. J. Jung, M. S. Ko, J. H. Lee, and J. T. Jeon. 2011. QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Anim. Genet. 42:621-626. https://doi.org/10.1111/j.1365-2052.2011.02204.x
  6. David, O., G. C. Fiorucci, M. T. Tosi, F. Altare, A. Valori, P. Saracco, P. Asinardi, U. Ramenghi, and V. Gabutti. 1996. Hematological studies in children with Down syndrome. Pediatr. Hematol. Oncol. 13:271-275. https://doi.org/10.3109/08880019609030827
  7. de Alarcon, P. A., L. A. Miceli, E. M. Mazur, and K. Smith. 1984. Down's syndrome and increased mean corpuscular volume (MCV), mean platelet volume (MPV) and neutrophil alkaline phosphatase (NAP). Environ. Sci. Technol. Pediatr. Res. 18:235A. https://doi.org/10.1021/es00126a713
  8. Dixon, N. E., B. G. Crissman, P. B. Smith, S. A. Zimmerman, G. Worley, and P. S. Kishnani. 2010. Prevalence of iron deficiency in children with Down syndrome. J. Pediatr. 157:967-971.e1. https://doi.org/10.1016/j.jpeds.2010.06.011
  9. Dupuis, J. and D. Siegmund. 1999. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151:373-386.
  10. Freiberg, A. S. 2012. A case based approach to severe microcytic anemia in children. In: New Advances in the Basic and Clinical Gastroenterology (Ed. T. Brzozowski). INTECH Open Access Publisher, Rijeka, Croatia. pp. 243-266.
  11. Gosset, P., G. A. Ghezala, B. Korn, M. L. Yaspo, A. Poutska, H. Lehrach, P. M. Sinet, and N. Creau. 1997. A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1). Genomics 44:237-241. https://doi.org/10.1006/geno.1997.4865
  12. Kivivuori, S. M., J. Rajantie, and M. A. Siimes. 1996. Peripheral blood cell counts in infants with Down's syndrome. Clin. Genet. 49:15-19.
  13. Leshin, L. 2006. Trisomy 21: The story of Down syndrome. http://www.ds-health.com/trisomy.htm. Accessed May 21, 2006.
  14. Lou, X. Y., J. Z. Ma, M. C. Yang, J. Zhu, P. Y. Liu, H. W. Deng, R. C. Elston, and M. D. Li. 2006. Improvement of mapping accuracy by unifying linkage and association analysis. Genetics 172:647-661.
  15. Mao, R., X. Wang, E. L. Spitznagel Jr., L. P. Frelin, J. C. Ting, H. Ding, J. W. Kim, I. Ruczinski, T. J. Downey, and J. Pevsner. 2005. Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol. 6:R107. https://doi.org/10.1186/gb-2005-6-13-r107
  16. Okamoto, K., N. Iwasaki, C. Nishimura, K. Doi, E. Noiri, S. Nakamura, M. Takizawa, M. Ogata, R. Fujimaki, and N. Grarup et al. 2010. Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus. Am. J. Hum. Genet. 86:54-64. https://doi.org/10.1016/j.ajhg.2009.12.009
  17. Okuda, T., M. Nishimura, M. Nakao, and Y. Fujita. 2001. RUNX1/AML1: a central player in hematopoiesis. Int. J. Hematol. 74:252-257. https://doi.org/10.1007/BF02982057
  18. Ron, M. and J. I. Weller. 2007. From QTL to QTN identification in livestock--winning by points rather than knock-out: A review. Anim. Genet. 38:429-439. https://doi.org/10.1111/j.1365-2052.2007.01640.x
  19. Shindoh, N., J. Kudoh, H. Maeda, A. Yamaki, S. Minoshima, Y. Shimizu, and N. Shimizu. 1996. Cloning of a human homolog of the Drosophila minibrain/rat Dyrk gene from "the Down syndrome critical region" of chromosome 21. Biochem. Biophys. Res. Commun. 225:92-99. https://doi.org/10.1006/bbrc.1996.1135
  20. Speck, N. A. and D. G. Gilliland. 2002. Core-binding factors in haematopoiesis and leukaemia. Nat. Rev. Cancer 2:502-513. https://doi.org/10.1038/nrc840
  21. Tenenbaum, A., S. Malkiel, I. D. Wexler, F. Levy-Khademi, S. Revel-Vilk, and P. Stepensky. 2011. Anemia in children with Down syndrome. Int. J. Pediatr. 2011:813541.
  22. van Bon, B. W., A. Hoischen, J. Hehir-Kwa, A. P. de Brouwer, C. Ruivenkamp, A. C. Gijsbers, C. L. Marcelis, N. de Leeuw, J. A. Veltman, H. G. Brunner, and B. B. de Vries. 2011. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin. Genet. 79:296-299. https://doi.org/10.1111/j.1399-0004.2010.01544.x
  23. Wachtel, T. J. and S. M. Pueschel. 1991. Macrocytosis in Down syndrome. Am. J. Ment. Retard. 95:417-420.
  24. Yoshikawa, M., K. Senzaki, T. Yokomizo, S. Takahashi, S. Ozaki, and T. Shiga. 2007. Runx1 selectively regulates cell fate specification and axonal projections of dorsal root ganglion neurons. Dev. Biol. 303:663-674. https://doi.org/10.1016/j.ydbio.2006.12.007
  25. Zhu, M. and S. Zhao. 2007. Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3:420-427.

Cited by

  1. Single nucleotide polymorphisms in candidate genes are significantly associated with resistance to Haemonchus contortus infection in goats vol.10, pp.1, 2016, https://doi.org/10.1186/s40104-019-0327-8