DOI QR코드

DOI QR Code

Metabotropic glutamate receptor dependent long-term depression in the cortex

  • Kang, Sukjae Joshua (Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University) ;
  • Kaang, Bong-Kiun (Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University)
  • Received : 2016.07.12
  • Accepted : 2016.08.23
  • Published : 2016.11.01

Abstract

Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.

Keywords

References

  1. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18-41. https://doi.org/10.1038/sj.npp.1301559
  2. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A. 1992;89:4363-4367. https://doi.org/10.1073/pnas.89.10.4363
  3. Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 1992;9:967-975. https://doi.org/10.1016/0896-6273(92)90248-C
  4. Oliet SH, Malenka RC, Nicoll RA. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron. 1997;18:969-982. https://doi.org/10.1016/S0896-6273(00)80336-0
  5. Bashir ZI, Jane DE, Sunter DC, Watkins JC, Collingridge GL. Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. Eur J Pharmacol. 1993;239:265-266. https://doi.org/10.1016/0014-2999(93)91009-C
  6. Bellone C, Lüscher C, Mameli M. Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol Life Sci. 2008;65:2913-2923. https://doi.org/10.1007/s00018-008-8263-3
  7. Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85-102. https://doi.org/10.1146/annurev.ne.12.030189.000505
  8. Kano M, Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987;325:276-279. https://doi.org/10.1038/325276a0
  9. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113-134. https://doi.org/10.1113/jphysiol.1982.sp014103
  10. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci. 1997;17:7503-7522. https://doi.org/10.1523/JNEUROSCI.17-19-07503.1997
  11. Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology. 1997;36:1517-1532. https://doi.org/10.1016/S0028-3908(97)00181-0
  12. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11:459-473.
  13. Huang CC, Yang PC, Lin HJ, Hsu KS. Repeated cocaine administration impairs group II metabotropic glutamate receptor-mediated long-term depression in rat medial prefrontal cortex. J Neurosci. 2007;27:2958-2968. https://doi.org/10.1523/JNEUROSCI.4247-06.2007
  14. Otani S, Daniel H, Takita M, Crépel F. Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci. 2002;22:3434-3444. https://doi.org/10.1523/JNEUROSCI.22-09-03434.2002
  15. Kemp N, Bashir ZI. Induction of LTD in the adult hippocampus by the synaptic activation of AMPA/kainate and metabotropic glutamate receptors. Neuropharmacology. 1999;38:495-504. https://doi.org/10.1016/S0028-3908(98)00222-6
  16. Kemp N, Bashir ZI. Long-term depression: a cascade of induction and expression mechanisms. Prog Neurobiol. 2001;65:339-365. https://doi.org/10.1016/S0301-0082(01)00013-2
  17. Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288:1254-1257. https://doi.org/10.1126/science.288.5469.1254
  18. Volk LJ, Daly CA, Huber KM. Differential roles for group 1 mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol. 2006;95:2427-2438. https://doi.org/10.1152/jn.00383.2005
  19. Volk LJ, Pfeiffer BE, Gibson JR, Huber KM. Multiple Gq-coupled receptors converge on a common protein synthesis-dependent longterm depression that is affected in fragile X syndrome mental retardation. J Neurosci. 2007;27:11624-11634. https://doi.org/10.1523/JNEUROSCI.2266-07.2007
  20. Kang SJ, Liu MG, Chen T, Ko HG, Baek GC, Lee HR, Lee K, Collingridge GL, Kaang BK, Zhuo M. Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. J Neurosci. 2012;32:11318-11329. https://doi.org/10.1523/JNEUROSCI.0146-12.2012
  21. Liu MG, Koga K, Guo YY, Kang SJ, Collingridge GL, Kaang BK, Zhao MG, Zhuo M. Long-term depression of synaptic transmission in the adult mouse insular cortex in vitro. Eur J Neurosci. 2013;38:3128-3145. https://doi.org/10.1111/ejn.12330
  22. Wei F, Li P, Zhuo M. Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J Neurosci. 1999;19:9346-9354. https://doi.org/10.1523/JNEUROSCI.19-21-09346.1999
  23. Kato N. Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci U S A. 1993;90:3650-3654. https://doi.org/10.1073/pnas.90.8.3650
  24. Kato N. Long-term depression requiring tACPD-receptor activation and NMDA-receptor blockade. Brain Res. 1994;665:158-160. https://doi.org/10.1016/0006-8993(94)91168-1
  25. Cho K, Kemp N, Noel J, Aggleton JP, Brown MW, Bashir ZI. A new form of long-term depression in the perirhinal cortex. Nat Neurosci. 2000;3:150-156. https://doi.org/10.1038/72093
  26. Rao Y, Daw NW. Layer variations of long-term depression in rat visual cortex. J Neurophysiol. 2004;92:2652-2658. https://doi.org/10.1152/jn.00298.2004
  27. Fitzjohn SM, Palmer MJ, May JE, Neeson A, Morris SA, Collingridge GL. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol. 2001;537:421-430. https://doi.org/10.1111/j.1469-7793.2001.00421.x
  28. Kleppisch T, Voigt V, Allmann R, Offermanns S. G(alpha)q-deficient mice lack metabotropic glutamate receptor-dependent longterm depression but show normal long-term potentiation in the hippocampal CA1 region. J Neurosci. 2001;21:4943-4948. https://doi.org/10.1523/JNEUROSCI.21-14-04943.2001
  29. Moult PR, Gladding CM, Sanderson TM, Fitzjohn SM, Bashir ZI, Molnar E, Collingridge GL. Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptormediated long-term depression. J Neurosci. 2006;26:2544-2554. https://doi.org/10.1523/JNEUROSCI.4322-05.2006
  30. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci. 2001;4:1079-1085. https://doi.org/10.1038/nn746
  31. Steinberg JP, Huganir RL, Linden DJ. N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proc Natl Acad Sci U S A. 2004;101:18212-18216. https://doi.org/10.1073/pnas.0408278102
  32. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 2000;25:635-647. https://doi.org/10.1016/S0896-6273(00)81066-1
  33. Bolshakov VY, Carboni L, Cobb MH, Siegelbaum SA, Belardetti F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat Neurosci. 2000;3:1107-1112. https://doi.org/10.1038/80624
  34. Moult PR, Corrêa SA, Collingridge GL, Fitzjohn SM, Bashir ZI. Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptordependent long-term depression. J Physiol. 2008;586:2499-2510. https://doi.org/10.1113/jphysiol.2008.153122
  35. Rush AM, Wu J, Rowan MJ, Anwyl R. Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus in vitro. J Neurosci. 2002;22:6121-6128. https://doi.org/10.1523/JNEUROSCI.22-14-06121.2002
  36. Gallagher SM, Daly CA, Bear MF, Huber KM. Extracellular signalregulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci. 2004;24:4859-4864. https://doi.org/10.1523/JNEUROSCI.5407-03.2004
  37. Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron. 2008;59:70-83. https://doi.org/10.1016/j.neuron.2008.05.023
  38. Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron. 2008;59:84-97. https://doi.org/10.1016/j.neuron.2008.05.014
  39. Moult PR, Schnabel R, Kilpatrick IC, Bashir ZI, Collingridge GL. Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology. 2002;43:175-180. https://doi.org/10.1016/S0028-3908(02)00110-7
  40. Schnabel R, Kilpatrick IC, Collingridge GL. An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology. 1999;38:1585-1596. https://doi.org/10.1016/S0028-3908(99)00062-3
  41. Zhang Y, Venkitaramani DV, Gladding CM, Zhang Y, Kurup P, Molnar E, Collingridge GL, Lombroso PJ. The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci. 2008;28:10561-10566. https://doi.org/10.1523/JNEUROSCI.2666-08.2008
  42. Hou L, Klann E. Activation of the phosphoinositide 3-kinase-Aktmammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci. 2004;24:6352-6361. https://doi.org/10.1523/JNEUROSCI.0995-04.2004
  43. Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev. 2009;61:395-412. https://doi.org/10.1124/pr.109.001735
  44. Lüscher C, Huber KM. Group 1 mGluR-dependent synaptic longterm depression: mechanisms and implications for circuitry and disease. Neuron. 2010;65:445-459. https://doi.org/10.1016/j.neuron.2010.01.016
  45. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215-222. https://doi.org/10.1016/S1364-6613(00)01483-2
  46. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533-544.
  47. Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31:199-207. https://doi.org/10.1016/j.tins.2008.01.003
  48. Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci. 2006;26:7555-7564. https://doi.org/10.1523/JNEUROSCI.1068-06.2006
  49. Bliss TV, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17:485-496. https://doi.org/10.1038/nrn.2016.68
  50. Delevich K, Tucciarone J, Huang ZJ, Li B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci. 2015;35:5743-5753. https://doi.org/10.1523/JNEUROSCI.4565-14.2015
  51. Wu LJ, Li X, Chen T, Ren M, Zhuo M. Characterization of intracortical synaptic connections in the mouse anterior cingulate cortex using dual patch clamp recording. Mol Brain. 2009;2:32. https://doi.org/10.1186/1756-6606-2-32
  52. Bermúdez-Rattoni F. Molecular mechanisms of taste-recognition memory. Nat Rev Neurosci. 2004;5:209-217. https://doi.org/10.1038/nrn1344
  53. Escobar ML, Alcocer I, Chao V. The NMDA receptor antagonist CPP impairs conditioned taste aversion and insular cortex longterm potentiation in vivo. Brain Res. 1998;812:246-251. https://doi.org/10.1016/S0006-8993(98)00931-7
  54. Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci. 2012;5:87.
  55. Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain. 2007;128:20-30. https://doi.org/10.1016/j.pain.2006.08.013
  56. Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited. Brain. 2012;135:631-640. https://doi.org/10.1093/brain/awr265
  57. Schreckenberger M, Siessmeier T, Viertmann A, Landvogt C, Buchholz HG, Rolke R, Treede RD, Bartenstein P, Birklein F. The unpleasantness of tonic pain is encoded by the insular cortex. Neurology. 2005;64:1175-1183. https://doi.org/10.1212/01.WNL.0000156353.17305.52
  58. Liu MG, Kang SJ, Shi TY, Koga K, Zhang MM, Collingridge GL, Kaang BK, Zhuo M. Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol. 2013;110:505-521. https://doi.org/10.1152/jn.01104.2012
  59. Qiu S, Chen T, Koga K, Guo YY, Xu H, Song Q, Wang JJ, Descalzi G, Kaang BK, Luo JH, Zhuo M, Zhao MG. An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Signal. 2013;6:ra34.
  60. Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T, Zhuo M. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci. 2002;5:573-579. https://doi.org/10.1038/nn0602-855
  61. Jasmin L, Burkey AR, Granato A, Ohara PT. Rostral agranular insular cortex and pain areas of the central nervous system: a tracttracing study in the rat. J Comp Neurol. 2004;468:425-440. https://doi.org/10.1002/cne.10978
  62. Reep RL, Winans SS. Afferent connections of dorsal and ventral agranular insular cortex in the hamster Mesocricetus auratus. Neuroscience. 1982;7:1265-1288. https://doi.org/10.1016/0306-4522(82)91133-2
  63. Yamamoto K, Koyanagi Y, Koshikawa N, Kobayashi M. Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex. J Neurophysiol. 2010;104:1933-1945. https://doi.org/10.1152/jn.00438.2010
  64. Liu MG, Zhuo M. Loss of long-term depression in the insular cortex after tail amputation in adult mice. Mol Pain. 2014;10:1.
  65. Courtney SM, Petit L, Haxby JV, Ungerleider LG. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos Trans R Soc Lond B Biol Sci. 1998;353:1819-1828. https://doi.org/10.1098/rstb.1998.0334
  66. Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci. 2015;9:173.
  67. Lebedev MA, Messinger A, Kralik JD, Wise SP. Representation of attended versus remembered locations in prefrontal cortex. PLoS Biol. 2004;2:e365. https://doi.org/10.1371/journal.pbio.0020365
  68. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315:1860-1862. https://doi.org/10.1126/science.1138071
  69. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699-711. https://doi.org/10.1016/S0893-133X(02)00346-9
  70. Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. Exp Brain Res. 2009;192:489-497. https://doi.org/10.1007/s00221-008-1642-z
  71. Fuster JM, Bodner M, Kroger JK. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature. 2000;405:347-351. https://doi.org/10.1038/35012613
  72. Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci. 1996;351:1445-1453. https://doi.org/10.1098/rstb.1996.0129
  73. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202. https://doi.org/10.1146/annurev.neuro.24.1.167
  74. Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44:449-464. https://doi.org/10.1007/s12035-011-8214-0
  75. Otani S, Auclair N, Desce JM, Roisin MP, Crépel F. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci. 1999;19:9788-9802. https://doi.org/10.1523/JNEUROSCI.19-22-09788.1999
  76. Walker AG, Wenthur CJ, Xiang Z, Rook JM, Emmitte KA, Niswender CM, Lindsley CW, Conn PJ. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci U S A. 2015;112:1196-1201. https://doi.org/10.1073/pnas.1416196112
  77. Murray EA, Bussey TJ, Saksida LM. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci. 2007;30:99-122. https://doi.org/10.1146/annurev.neuro.29.051605.113046
  78. Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci. 2007;30:176-184. https://doi.org/10.1016/j.tins.2007.02.005
  79. Brown MW, Aggleton JP. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci. 2001;2:51-61. https://doi.org/10.1038/35049064
  80. Brown MW, Xiang JZ. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog Neurobiol. 1998;55:149-189. https://doi.org/10.1016/S0301-0082(98)00002-1
  81. Corodimas KP, LeDoux JE. Disruptive effects of posttraining perirhinal cortex lesions on conditioned fear: contributions of contextual cues. Behav Neurosci. 1995;109:613-619. https://doi.org/10.1037/0735-7044.109.4.613
  82. Meunier M, Bachevalier J, Mishkin M, Murray EA. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci. 1993;13:5418-5432. https://doi.org/10.1523/JNEUROSCI.13-12-05418.1993
  83. Watson C, Paxinos G, Puelles L. The mouse nervous system. 1st ed. Amsterdam, Boston: Elsevier Academic Press; 2012. 795 p.
  84. McCaffery B, Cho K, Bortolotto ZA, Aggleton JP, Brown MW, Conquet F, Collingridge GL, Bashir ZI. Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience. 1999;93:977-984. https://doi.org/10.1016/S0306-4522(99)00205-5
  85. Barker GR, Bashir ZI, Brown MW, Warburton EC. A temporally distinct role for group I and group II metabotropic glutamate receptors in object recognition memory. Learn Mem. 2006;13:178-186. https://doi.org/10.1101/lm.77806
  86. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. A neural circuit for spatial summation in visual cortex. Nature. 2012;490:226-231. https://doi.org/10.1038/nature11526
  87. Gilbert CD, Wiesel TN. Receptive field dynamics in adult primary visual cortex. Nature. 1992;356:150-152. https://doi.org/10.1038/356150a0
  88. Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338:334-337. https://doi.org/10.1038/338334a0
  89. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962;160:106-154. https://doi.org/10.1113/jphysiol.1962.sp006837
  90. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068-1076. https://doi.org/10.1038/nn.3446
  91. Laramée ME, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circuits. 2015;8:149.
  92. van Versendaal D, Levelt CN. Inhibitory interneurons in visual cortical plasticity. Cell Mol Life Sci. 2016;73:3677-3691. https://doi.org/10.1007/s00018-016-2264-4
  93. Anwyl R. Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog Neurobiol . 2006;78:17-37. https://doi.org/10.1016/j.pneurobio.2005.12.001
  94. Renger JJ, Hartman KN, Tsuchimoto Y, Yokoi M, Nakanishi S, Hensch TK. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc Natl Acad Sci U S A. 2002;99:1041-1046. https://doi.org/10.1073/pnas.022618799

Cited by

  1. Of Men and Mice: Modeling the Fragile X Syndrome vol.11, pp.None, 2016, https://doi.org/10.3389/fnmol.2018.00041
  2. Global hippocampal atrophy in major depressive disorder: a meta-analysis of magnetic resonance imaging studies vol.40, pp.4, 2018, https://doi.org/10.1590/2237-6089-2017-0130
  3. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-84943-x