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In this paper, an efficient beam tracking algorithm for a 
regularized zero-forcing (RZF) approach in slowly fading 
multiple-input and single-output (MISO) broadcast 
channels is considered. By modifying an RZF equation, an 
RZF beam tracking algorithm is proposed using matrix 
perturbation theory. The proposed algorithm utilizes both 
beams from the previous time step and channel difference 
(between the previous and current time steps) to calculate 
the RZF beams. The tracking performance of the proposed 
algorithm is analyzed in terms of the mean square error 
(MSE) between a tracking approach and an exact 
recomputing approach, and in terms of the additional 
MSE caused by the beam tracking error at the receiver. 
Numerical results show that the proposed algorithm has 
almost the same performance as the exact recomputing 
approach in terms of the sum rate. 
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I. Introduction 

As the throughput demand of wireless networks increases, 
beamforming technologies with multiple antennas at the base 
stations (BSs) have been adopted in various standards, such 
as LTE-A and WLAN. Due to a limitation of space, a mobile 
station (MS) can have only one antenna, in most cases, 
whereas a BS can have multiple antennas. In such an 
environment, multiple-input and single-output (MISO) 
broadcast channels become attractive, where a BS with 
multiple antennas simultaneously serves multiple MSs with a 
single antenna by using beamforming to mitigate interference. 
One of the simplest beamforming methods for MISO 
broadcast channels is that of the zero-forcing (ZF) approach, 
which pre-cancels any interference leakage to unintended 
receivers [1], [2]. This approach can achieve the best 
performance when the noise effect is neglected. The ZF 
approach is not optimal in terms of the sum rate; 
consequently, there have been several methods put forward in 
an attempt to enhance it. In the case of multiuser multiple-
input and multiple-output (MIMO) broadcast channels, such 
methods include regularized channel inversion or regularized    
zero-forcing (RZF) [3]–[5] and signal-to-leakage-plus-noise 
ratio [6].  

In the above beamforming methods, channels are assumed to 
be static in nature. If the opposite is assumed (that is, channels 
are time-varying in nature), then a corresponding beamforming 
method must recalculate beams through the use of updated 
channel information. This, however, entails a greater level   
of complexity because matrix inversion or decomposition 
operations are required at each time step. 

In general, because the channel coefficients of a time-varying 
channel experience very little variation over time, a tracking 
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algorithm that utilizes both beams from the previous time step 
and channel difference (between the previous and current time 
steps) to calculate the RZF beams can be developed. For a ZF 
approach, an efficient algorithm to update a beam under time-
varying channels was proposed by Kim and others [7]. This 
algorithm can directly use matrix perturbation, because a beam 
is obtained by solving a least squares problem, for which the 
solution is given by either a singular vector or an eigenvector. 
However, an RZF approach considering noise effects has no 
direct relation with a singular vector of a channel matrix. If a 
modified channel matrix is defined by concatenating a channel 
matrix with the square root of a noise covariance matrix, then 
an RZF beam can be regarded as a ZF beam associated with 
the modified channel matrix. With such a modified formula, a 
beam tracking algorithm can be developed by using null-space 
perturbation in matrix perturbation theory.  

An efficient algorithm that calculates RZF beams and has an 
exact calculation phase and a tracking phase dependent upon 
the tracking depth is proposed. The tracking error and 
additional mean square error in the received signal at an MS 
are analyzed. In detail, their behaviors depending on the 
minimum singular value of the modified channel matrix and 
mobile speed of the MS are examined.  

The main contributions of this paper can be summarized as 
follows. 
▪ A reformulation of an existing RZF equation is introduced 

by defining a concatenating matrix, which is obtained by 
concatenating a composite channel matrix and the square 
root of a noise covariance matrix. 

▪ An RZF beam tracking algorithm is proposed by using 
matrix perturbation theory, and its performance is analyzed. 

▪ The RZF beam tracking algorithm reduces the complexity 
of an RZF approach under the assumption of time-varying 
channels. 

We will make use of standard notational conventions. 

Vectors and matrices are written in boldface lowercase 

characters and boldface uppercase characters, respectively. All 

vectors are column vectors. For matrix A, AT and AH indicate 

the transpose and Hermitian transpose of A, respectively. 

Additionally, †A  means a pseudo inverse of matrix A, and 

diag (a1, … , aK) denotes a diagonal matrix of which the ith 

diagonal component is ai. Further, we denote the identity 

matrix and zero matrix by I and 0, respectively; the Frobenius 

norm of matrix A by ||A||F; and the 2-norm of matrix A by ||A||2. 

For matrix A, Col(A) and Null(A) are the column space and 

null space of A, respectively. The notation a ~ N(, ) means 

that vector a is a Gaussian-distributed random vector with 

mean  (vector) and covariance  (matrix). 

II. System Model and Preliminaries 

We consider a downlink MISO channel where a BS with 
multiple antennas transmits data to multiple MSs 
simultaneously. The BS is equipped with Nt antennas, and the 
K MSs have a single antenna. By using a properly designed 
beam vector at the BS, the interference leakage to the 
unintended MSs can be efficiently eliminated. At time n, the 
received signal by MS k can be 

1,
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ],

K

k k k k k l l k
l l k

y n n n s n n n s n n n
 

  H H vv (1) 

where Hk[n] stands for the MISO channel from the BS to MS k, 
vk[n] is the beamforming vector associated with the data 
symbol sk[n] (which is transmitted to MS k), and nk[n](~ N(0, 
2)) is additive white Gaussian noise. By stacking the received 
signal for all MSs, the total signal can be expressed by 

 T1[ ] [ ], ... , [ ] [ ] [ ] [ ] [ ],Kn y n y n n n n n y V s nH   (2) 

where  
TT T

1 1[ ] [ ],..., [ ] [ ] [ ],..., [ ] ,,K Kn n n n n n   H vH vH V  

 T1[ ] [ ], ... , [ ] ,Kn n s nss and  T1[ ] [ ], ... , [ ] .Kn n n nnn  The  

ZF approach to design the beam for MS k is expressed as 

[ ] [ ] ,k kn n H v 0                 (3) 

where 

TT T T T
1 1 1[ ] [ ], ... , [ ] [ ], ... , [ .]k k k Kn n n n n    H H H H H  

This means that the beam vector vk[n] lies in the null-space of 

the composite interference channel matrix [ ]k nH  for MS k. 

In the ZF approach, the noise effect is not considered. Thus, 

sum rate losses in low and medium signal-to-noise ratio (SNR) 

ranges cannot be avoided. As an alternative, and to enhance the 

performance in such SNR ranges, an RZF approach was 

introduced elsewhere [3]–[5] and is given by 

  1H H[ ] [ [ ] ] ,] [n n n n 


 H H IHV         (4) 

where α is a normalizing constant and ρ is a regularization 
parameter. This approach is frequently referred to as minimum 
mean square error (MMSE) precoding, because it is similar to 
the MMSE receiver design. By adjusting ρ, an optimal tradeoff 
between the allowed interference and noise enhancement can 
be obtained. In practice, the regularization parameter is chosen 
by ρ = Nt (2/Pt), which is motivated by the results obtained by 
Peel and others [3]. It is also known that this parameter 
approximately maximizes the signal-to-interference-plus-noise 
ratio at each receiver. 

To develop an efficient RZF beam tracking algorithm under 
time-varying channels, we define the pseudoinverse of a matrix 
obtained by concatenating the composite channel matrix and 
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square root of the noise covariance, [ ] [ ] ,n n  
 G H I  as 

follows: 

  1H H ,[ ] [ ] [ ] [ ]n n n n


W G GG          (5) 

where α′ is a normalizing constant. We can obtain V[n], which 
is the same as (4), by extracting the first Nt rows from W[n] 
and rescaling it. That is, the RZF beams can be calculated using 
the ZF approach with modified composite channel matrix G[n].  

The kth column of W[n], wk[n], lies in the null-space of [ ],nG  

which is obtained by deleting the kth row from G; that is, 

[ ] [ ] ,k k kn n  
 G IH   where Ik is a modified identity 

matrix (that is, I but with the kth row deleted). The kth column 

of W[n], wk[n], can be expressed as a linear combination of 

basis vectors of the null-space of [ ]k nG  for all k; that is, 

[ ] [ ] .k kn n G w 0                (6) 

To evaluate the tracking performance, we use the first-order 
Gauss-Markov channel model, which is widely used in the 
literature. For an (i, j) element of channel matrix H[n], its  
time-variation is given by 

2[ ] [ 1] [ ] ( 1),1i ijj i ijih h un n n n        (7) 

using hij[0] ~ N(0, 1) and uij[n] ~ N(0, 1). A correlation 
coefficient of channel fading is denoted by βi, and depends on 
both Doppler frequency fd and symbol duration Ts [8]. In detail, 
the correlation coefficient is given by 

2
0 d s d s2 2

0

2
d s

( 1)
(2π ) (2π )

2 ( )

1 ( ) ,π

r
r

i r
r

J f T f T
r

f T







 

 


       (8) 

where J0() is a Bessel function of order zero. When channel 
coefficients slowly vary over time, that is, fd Ts  1, the last 
approximation holds. 

III. Efficient RZF Beam Tracking Algorithm 

In this paper, we consider an RZF approach under the 
assumption of time-varying channels. Under a straightforward 
approach (an exact recalculating approach), an RZF beam can 
be recalculated with current channel information; however, the 
recalculation is too complex to implement in real time. To 
reduce the computation complexity with a negligible loss of the 
achievable sum rate, an efficient beam tracking algorithm is 
required. Under a general ZF approach, matrix perturbation 
theory was adopted by Kim and others [7] to track the null-
space of the composite interference channel matrix. A similar 
perturbation approach cannot be applied to the RZF approach 
given by (4). However, the RZF approach can be regarded as a 

ZF approach with a modified channel matrix when (4) is 
reformulated as (5). This reformulation makes it possible to 
apply null-space perturbation in developing an efficient beam 
tracking algorithm. 

For more detail, we introduce null-space perturbation with a 
linear equation given by 

0 0 = ,A P 0                   (9) 

where A0 is a full rank M × N (> M) matrix and P0 is a unitary 
N × (N – M) matrix; that is, the columns of P0 comprise the 
orthonormal basis vectors of the null-space of A0. When A0 is 
slightly perturbed by A() = A0 + A1, the solution to the 
perturbed linear equation can be approximated with a simple 
equation. In [9], null-space perturbation was introduced when 
A0 is a square matrix. The following theorem is for a fat matrix 
with M < N. 
Theorem 1. Let P0 be a unitary matrix of a solution to (9); that 
is, a collection of orthonormal basis vectors. The new basis of 
the solution to A()P() = 0, where A() is a rank-preserving 
perturbation of A0 (that is, the rank of A() is the same as that 
of A0) is given by 

† 2
0 1 00( ) ( ).O    P A A PP          (10) 

Proof. The perturbed matrix P() can be represented as a 
power series: P() = P0 + P1 + 2P2 +    . Instead of P()H P() 
= I, we suppose that the normalized condition for P() satisfies 
quasi-orthonormality, as in [9]; that is, we have 

H
0 ( ) = .P P I                 (11) 

Since P() should satisfy A()P() = 0, we can obtain the 
following system of fundamental equations: 

1

0
( 1, 2, ...).i k i

i
k


  A P 0           (12) 

From the normalization condition (11), we have 

H
0

0,

otherwise.k

k 
 


I
P P

0
           (13) 

The remaining derivation of the recursive formula for Pk is 
based on the following lemma [9]:  

Lemma 1. The necessary and sufficient condition for the 

system of linear equations By = c is feasible for any x, xHc = 0 

whenever xHB = 0. Moreover, the general solution for the 

feasible linear equation is † y B x d  if and only if Bd = 0. 
The general solution for (12) for k = l (l > 0) is 

†
10 1 ( 1, 2,...),l l l l P Q A A P         (14) 

where ( )N N M
l

 Q   satisfying A0Ql = 0. Hence, Ql can 

be represented as lPM  with ( ) ( ) .N M N M
l

  M   With  
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k = 0 in (12), P0 should satisfy A0P0 = 0 and normalized 

condition (13). Hence, we can choose P0 as .P  For l = 1, 2, 
… , (14) has to satisfy normalized condition (13); that is, we 
have 

 †
0

H
1 1 .l l P A P 0AMP              (15) 

From the property of Col( †
0A )⊥ = Null(A0); that is, 

0
†H  0P A , Ml is uniquely determined as 0 for l = 1, 2, … . 

Hence, the recursive solution for Pl is given by 

1
†

10 ( 1, 2,...),l l l  P A A P         (16) 

with 0 .P P  With approximation, 
2

0 1( ) ( ),O    P P P  

where †
1 1 00 . P A A P                              ■ 

Based on the above theorem, we can derive an RZF beam 
tracking algorithm. The channel matrices for MS k at time m 
and n (> m) are given by Hk[n] = Hk[m] + Hk[m, n]. With 
them, we can define the concatenated matrix for MS k to 
calculate an RZF beam as follows: 

[ ] [ ] [ , ].k k kn m m n  G G G              (17) 

We set 0 [ ]k mA G  and ( ) [ ] [ ]k kn m   A G G   
[ , ] ,k m n
 G  where 2|| [ , ] ||k m n  G  in Theorem 1. It is 

known that the concatenated matrix [ ]k mG  and perturbation 

matrix [ , ]k m nG  almost surely have the same rank because 

the entries of the channel matrices (that is, the left block of the 
concatenated matrix) are generated as an independent and 
identically distributed Gaussian distribution, and the right block 

has a column rank. Then, the solution to [ ] [ ]k kn n R 0G  

becomes [ ] [ ]k kn m R R [ , ],k m nR  where [ ]k mR  is the 

solution to [ ] [ ] .k km m G R 0  By the perturbation theory, we 

have 

2†
2[ ] [ ] [ ] [ , ] [ ] (|| [ , ] || ).k k k k kkn m m m n m O m n    R R G G R G  

      (18) 

The transmit beam for MS k at time n can be expressed by the 

first Nt elements in a vector of the linear combination       

of †[ ] [ ] [ ] [ , ] [ˆ ].k k k kkn m m m n m  R R G G R   Here, the 

coefficients of the linear combination are determined with the 

projection of the kth row of G[m] onto the null-space of 

[ ]k mG ; that is, wk[m] = Rk[m]fk. For simplicity, the combining 

coefficient fk is maintained during beam tracking. Then, wk[n] 

is determined by Rk[n]fk with (18). By right-multiplying fk in 

(18), we have 

2

†

2

[ ] [ ] [ ] [ , ] [ ]

(|| [ , ] || ).

k k k kk

k

n m m m n m

O m n

  

 

w w G G w

G

 


       (19) 

As shown in (19), the tracking error of the beam is determined 

by 2|| [ , ] || .k m nG  Therefore, the tracking error becomes 

more significant as the time difference between m and n 

increases. For a more accurate tracking of RZF beams, we 

have to recalculate the beam with an operation of singular 

value decomposition when (n – m) is large. In practice, the 

tracking depth, Lt, should be defined and exact beams should 

be calculated with the concatenated matrix at every Lt time step. 

The overall process of RZF beam calculation can be 

summarized as follows: 
Step 0. Initialization: Obtain CSI, {Hk[n], k = 1, … , K}, and 
SNR, 2. 
At n = iLt for some integer Lt and i = 0, 1, … (Exact 

Calculation Phase) 

Step 1. For MS k, construct [ ]k tiLG  with {Hl[iLt], l = 1, … , 

k − 1, k + 2, … , K} and 2. 

Step 2. With [ ],k tiLG  obtain basis vectors by subspace 

decomposition. 

Step 3. With the basis vectors in the null-space of [ ]k tiLG  

(Rk[iLt]), fk, which is calculated with Hk[iLt], and 2, obtain an 

RZF beam vector, vk[n], from wk[iLt] = Rk[iLt]fk by taking the 

first Nt components. 
For n = iLt + 1 : iLt + Lt − 1 (Tracking Phase) 

Step 4. Obtain [ , ] [ ] [ ]k t k k tiL n n iL  G G G   . 

Step 5. Calculate the perturbed solution as 

†[ ] [ ] [ ] [ , ] [ ].ˆ k k t t k t k tkn iL iL iL n iL  w w G G w   

Step 6. With ˆ [ ],k nw  obtain an RZF beam vector, vk[n], by 

taking the first Nt components from ˆ [ ].k nw  

Because the accuracy of beam tracking depends on 

2|| [ , ] || ,k tiL nG  it can be adjusted by changing the value of 

tracking depth Lt. The tracking depth can be regarded as a 

tradeoff between the complexity and accuracy of the beam 

calculation.  

In this paper, we assume downlink MISO channels where 

MSs have a single antenna. However, the RZF beam tracking 

algorithm can be extended to downlink MIMO channels with 

MSs equipped with multiple antennas by defining [ ]k nG  

with MIMO channel matrices,  [ ], 1,..., .l n l LH  

IV. Performance Analysis of Beam Tracking 

To investigate performance loss caused by the proposed RZF 

tracking approach, the performance of RZF beamforming with 

inaccurate beam vectors is analyzed in this section. If the 

designed beam vector wk[n] lies in the null-space of [ ]k nG  at 

time n, then we can achieve a good performance with RZF 

beamforming. However, the beam obtained by the proposed 
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tracking algorithm ˆ [ ]k nw  does not lie in the null-space of 

[ ]k nG  exactly. This misalignment can be considered a source 

of additional noise. With such a concept, we can derive the 

performance loss caused by the tracking algorithm. To this end, 

the detailed expression of the second term in the null-space 

perturbation (that is, 2P2) is used by neglecting the third and 

higher order terms. 
Lemma 2. When the perturbed null-space of A() = A0 + A1 

is approximated by the first two terms in (10) (that is, 

0 1 00
†P A A P ), the approximation error is given by 

2 3 2 2 3
10

† †
1 0 01( ) ( ) ( ).O O        E A A P A A P  (20) 

Proof. As shown in the proof of Theorem 1, a more exact 
expression for the perturbed null-space is given by 

2
0 1 2( ) .     P P PP            (21) 

Defining the perturbed null-space with P0 + P1, the error 
vector can be approximated with the second term, 2P2. From 
(16), †

2 1 10 . P A A P  Then, the error matrix can be 
approximated with (20).                             ■ 

With the above lemma, the error in beam tracking based on 
the perturbed null-space at time n can be obtained by 

 † 2

[ , ] [ ] [ ]ˆ

[ ] [ , ] [ ].

k k k

k kk

m n n n

m m n m

 

 

e w w

G G W         (22) 

For a more detailed investigation on the tracking error, we 
assume that 

H

H
1 ( 1) 1 ( 1) 1

[ ] [ ] [ ] [ ]

[ ] diag( , ,[ ) ] ,][
t

k k k k

K K N K

m m m m

       





ΦG Ψ

0

Λ

  


(23) 

where [ ],k mΦ  [ ],k mΛ  and [ ]k mΨ  are a (K – 1) × (K – 1) 
unitary matrix, a (K − 1) × (Nt + K) diagonal matrix, and a (Nt + 
K) × (Nt + K) unitary matrix, respectively. Then, we can rewrite 
(22) as follows: 

 2
1 1

H H

1 1

1 1
H

†

1 1

1 1
H

1 1

[ ] [ , ] [ ]

1 1
[ , ] [ , ] [ ]

1 1
[ , ]

1 1
[ , . ]

k kk

K K

j j k i i k k
j ij i

K K

j j k i i
j ij i

K K

i j k i j
j ij i

m m n m

m n m n m

m n g

g m n

   
 

  
 

  
 

 

 

 

 

 

 



 
   

 

 
   

 

 
  

 

 

 

 

G G w

G G w

G

G

 

 





      (24) 

In the second equality, we define 
H [ , ] [ ],i i k kg m n m G w  

which is a scalar. With this result, the upper bound of 
2[ , || || ]k m ne  can be evaluated. 

Lemma 3. The approximated error of beam tracking in (22), 

denoted by  † 2
[ ] [ , ] [ ],k kk m m n mG G w 

 is upper-bounded as 

 
22 12 4

22
1

† 1
[ ] [ , ] [ ] || [ , ] || .

| |

K

k k kk
i i

m m n m m n






 
    

 
G G w G  

 (25) 
Proof. By using sub-additivity and sub-multiplicity, we have 

 
22

2
1 1

H 2
2

1 1

1 1
2 2

22 2
1 1

1 1
4
22 2

†

1 1

2
1

2
1

[ ] [ , ] [ ]

1 1
[ , ] || |

| |

1 1
| | || [ , ] ||

| | | |

1 1
|| [ , ] ||

| | | |

1
|

| |

|

k kk

K K

i j k i j
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Here, we use || || || || 1i i    and 
H| | [ , ] [ ]i i k kg m n m G w  

2
[ , ] .k m n G                                   ■            

From Lemma 3, the error in beam tracking depends on   

the distribution of singular values of [ ]k mG  as well as 

2|| [ , ] || .k m nG  This means that the tracking error becomes 

significant when the minimum singular value is small. 
Defining ˆ [ ] [ ] [ ]k k kn n n www   and ˆ [ ] [ ] [ ],k k kn n n v v v  

where [ ]k nw  and [ ]k nv  denote the tracking errors in 
ˆ [ ]k nw  and ˆ [ ],k nv  respectively, we can write the received 

signal at MS k as follows: 
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   (27) 

In the last equality, the third term, 1 ,[ ] [ ] [ ]K
j jj jn n s n H v is 

the interference increment due to beam tracking error. When 
there is no tracking error (that is, [ ]k n  0v ), the MMSE 

solution [ ]k nv  minimizes the mean square error (MSE) 

between the transmitted and received signal, 
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2
[ ]( [ ]) [ ] ,k k ky n n s n  v  where [ ]( [ ])k ky n nv  is the 

received signal with transmit beam of [ ].k nv  When a 

tracking error exists, the MSE is given by 

 2
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(28) 
where ˆ[ ]( [ ])k ky n nv  denotes the received signal with the 
beam vector designed by the proposed method. Here, we 
assume that the tracking noise is a Gaussian vector that is 
independent of both the beam vector and the background noise. 
The second term in the right-hand side of (28) is the additional 
MSE made by a mismatch between the tracked beam vector 
and the exact vector. thus, it can cause a loss of system 
throughput and is regarded as one of the performance measures. 
The relation between this performance measure and other 
conditions, including mobility (vm) and tracking depth (n – m), 
can be explained with the following theorem. 
Theorem 2. Assume that the mobile speed of all K users with a 
single antenna is vm, and two time indices of the exact inversion 
phase and the tracking phase are given by m and n (> m); that is, 
the tracking depth is (n – m). Under the Gauss-Markov channel 
model, the additional MSE due to tracking error is given by 

2
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where c′′ is a certain constant. 
Proof. The additional MSE due to a tracking error is expressed 
as 
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          (30) 
In the first inequality, we use the triangular inequality, sub-

multiplicativity of the norm, that is, 2| [ ] [ ] |j jn n   H v  

2 2|| [ ] || || [ ] ||j jn nH v   and 
2| [ ] | 1.js m   Based on (19), 

we can see that 2
2|| || || [ , ] | .|j jc m n v G  Then, the second  

inequality can be obtained. The third inequality holds because 
||A||2 ≤ ||A||F for a matrix. At first, we have to investigate the 

distribution of ||Hj[n]||2. Each component of ||Hj[n]|| is a zero-
mean complex Gaussian random a variable with a variance of 
1. Then, 

2 2
22 || [ ] || ,~

tj Nn H               (31) 

where 2
k  denotes a chi-squared distribution with k degrees 

of freedom. Additionally, the distribution of 2|| [ , ] ||j Fm nG  

can be obtained by the channel model given by (7). 
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It is well known that the nth moment of a chi-squared random 

variable Z with k degrees of freedom is ( /2)
( /2)
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where (·) is the gamma function. Then, we have 
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         (34) 

where vm is the velocity of mobile terminals, and λ is the 
wavelength of the carrier. Then, we can obtain the behavior of 
the upper bound of the additional MSE as follows: 

2 4
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where c′′ is a constant.                               ■ 

Based on this observation, we can determine the tracking depth, 

Lt, depending on the velocity of the MSs.  
The complexity of the proposed algorithm in terms of the 

number of complex multiplications can be estimated. The 
complexity for the exact beam calculation at every time is 
given by 

2 32
2 ( )

3t tL K N K K
   
 

           (36) 

because a matrix inversion is required at each time step. For  
the proposed algorithm, 2( )( 1)tN K K   multiplications 
are required at each time step in the tracking phase. 
Additionally, the proposed algorithm requires more complexity 
to prepare the tracking phase; for example, the calculation of 

† [ ]tk iLG  and [ ] [ ].k t k tiL iLwG  The total number of 
multiplications for the proposed algorithm is given by 
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V. Numerical Results 

In this section, we show the numerical results under certain 
conditions to verify the analysis in the previous sections. Here, 
we assume that the carrier frequency is 2 GHz and the symbol 
duration is 66.7 μs, which is the OFDM symbol duration of 
3GPP LTE. It is assumed that Nt = 4, Nr = 1, and K = 4. Time-
varying channels are obtained by the Gauss-Markov model 
described in Section II. For a simple evaluation and verification 
of the results in the previous sections, the mobile speed of all  
K users is the same as vm, and SNR = 20 dB. The channel 
variation over time is assumed to be known. In this paper, we 
focus solely on an RZF beam tracking algorithm. The channel 
variation over time can be obtained by optimal channel 
prediction based on the Kalman filter as in [10]. 

First, the beam-tracking error depending on the mobile speed 

and the singular values of [ ],k mG  which is denoted by λmin, 

is examined. Among the singular values, the minimum value 

has the most significant effect.  

Figure 1 shows the MSE performance of the proposed RZF 

beam tracking algorithm with different minimum singular 

values of [ ].k mG  As examined in Lemma 3, the MSE of the 

beam tracking significantly depends on the minimum singular 

value of [ ]k mG ; that is, λmin. As λmin decreases (that is, 

[ ]k mG  is illconditioned), the accuracy of the beam tracking 

degrades and the MSE between the exact and tracked beams 

increases. With a given mobile speed, the gap between 

different channel realizations with different λmin is a constant 

regardless of the time index (n – m). This also coincides with 

Lemma 3. 
Next, we investigate the behavior of the additional MSE 

caused by tracking error, 2

1
[| [ ] [ ] [ ] | ],

K

j jj
n n s n

 v  after the  

exact calculation at time m as a function of mobile speed vm. In 

Fig. 2, we show the additional MSE curves as a function of vm 

with a given tracking time (n − m) of 50 or 100. To verify the 

effect of vm, the initial channels {hij [m]|i, j = 1, … , 4} are fixed, 

and {uij [n]} are randomly chosen from the complex Gaussian 

distribution with zero mean and unit variance at each 

realization with (7) and (8). According to Theorem 2, the upper 

bound of the additional MSE behaves like vm
4. We can see that 

the additional MSE is well matched with cvm
4, where c is a 

certain constant in Fig. 2.  
Additionally, we compare the sum rate performance of the 

proposed RZF tracking approach with that of the exact beam 
calculation at each time. We considered three different mobile 
speeds of 50 km/h, 100 km/h, and 200 km/h. To calculate the 
average sum rate, we take the average over the whole duration 
of tracking depth Lt with 1,000 channel realizations. In an exact 

Fig. 1. MSE of beam tracking with λmin  {1.02, 0.87, 0.48}, and 
vm  {10, 50} km/h when Nt = K = 4 and Nr = 1. 
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Fig. 2. Additional MSE due to tracking error at different mobile 
speeds with λmin = 1.02, (n – m)  {50, 100} when Nt = K
= 4 and Nr = 1. Here, c' = 2.5  10–12 and c" = 7  10–13. 
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Fig. 3. Average sum rate at different mobile speeds when Nt = 
K = 4, Nr = 1, Lt = 100, and vm  {50, 100, 200} km/h. 
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Fig. 4. Average sum rate of RZF and ZF tracking algorithms at 
different mobile speeds when Nt = K = 4, Nr = 1, Lt = 100, 
and vm  {50, 200} km/h. 
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Fig. 5. Computational complexity of exact beam calculation and
proposed tracking approaches when Nt = K = 4, Nr = 1. 
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beam calculation, the RZF approach given by (4) is applied.  
As we can see in Fig. 3, the proposed algorithm shows a  
negligible loss of the sum rate when the mobile speed is less 
than 100 km/h. Especially at a low or medium SNR, the sum 
rate loss becomes nearly zero because the noise at the receiver 
is dominant over the additional MSE caused by the tracking 
error. As shown in Fig. 2, the additional MSE is much less than 
10–3 even with (n – m) = 100 and vm = 100 km/h. This means 
the tracking error is much less than the noise when SNR ≤   
30 dB. This fact can be verified with the sum rates in Fig. 3. 

Figure 4 shows the average sum rate of the proposed RZF 
tracking approach and the conventional ZF tracking approach 
in [7]. As expected, the RZF approach shows a better 
performance than the ZF approach in a low SNR region. As the 
SNR increases, the performance gap becomes negligible. 

Finally, the computational complexity of the two different 
approaches is shown in Fig. 5 with different tracking depths. 
As expected, the proposed algorithm can reduce the beam 
design complexity over the exact calculation approach as the 
tracking depth increases. 

VI. Conclusion 

We proposed an RZF beam tracking algorithm for time-
varying broadcast channels with multiple antennas. The 
algorithm has been developed with the null-space update 
formula based on matrix perturbation theory. We analyzed the 
performance of the proposed RZF beam tracking algorithm to 
obtain insights into the factors affecting its performance. 
Numerical results were provided to verify the analysis and 
show the performance of the proposed algorithm. In 5G 
networks, massive antennas can be equipped at the BSs, and 
the beam calculation becomes more complicated. Therefore, 
the complexity reduction in a beam calculation is an important 
issue. The proposed algorithm provides an efficient way to 
track beams with a comparable sum rate performance and less 
complexity. 
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