DOI QR코드

DOI QR Code

A brief review on the recent progress of superconducting nanowire single photon detectors

  • Chong, Yonuk (Korea Research Institute of Standards and Science)
  • 투고 : 2017.11.20
  • 심사 : 2017.11.24
  • 발행 : 2017.12.31

초록

Superconducting nanowire single photon detectors (SNSPD) have become the most competent photon-counting devices in wide range of wavelengths. Especially in the communication wavelength (infrared), SNSPD has shown unbeatable superior performance compared to the state-of-art semiconductor single photon detectors. The technology has matured enough for the last decade so that several commercial systems are now almost ready for routine use in general optics experiments. Here we summarize briefly the recent progress in this research field, and hope to motivate further research on the improvement of the device and the system. We cover the basic key concepts, device and system performances, remaining issues and possible further research directions of SNSPD.

키워드

참고문헌

  1. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett., vol. 79(6), pp. 705-707, 2001. https://doi.org/10.1063/1.1388868
  2. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics and applications," Supercond. Sci. Technol., vol. 25(6), pp. 063001, 2012. https://doi.org/10.1088/0953-2048/25/6/063001
  3. R. H. Hadfield, "Single -photon detectors for optical quantum information applications," Nature Photonics, vol. 3, pp. 696-705, 2009. https://doi.org/10.1038/nphoton.2009.230
  4. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, "Detecting single infrared photons with 93% system efficiency," Nature Photonics, vol. 7(3), pp. 210-214, 2013. https://doi.org/10.1038/nphoton.2013.13
  5. K. S. Il'in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol'tsman, Roman Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, "Picosecond hot-electron energy relaxation in NbN superconducting photodetectors," Appl. Phys. Lett., vol. 76, pp. 2752, 2000. https://doi.org/10.1063/1.126480
  6. S. Miki, T. Yamashita, H. Terai, and Z. Wang, "High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler," Opt. Express, vol. 21(8), pp. 10208-10214, 2013. https://doi.org/10.1364/OE.21.010208
  7. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, "Superconducting $a-W_xSi_{1-x}$ nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm," Appl. Phys. Lett., vol. 98, pp. 251105, 2011. https://doi.org/10.1063/1.3600793
  8. V. B. Verma, B. Korzh, F. Bussieres, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, "High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films," Opt. Express, vol. 23(26), pp. 33792-33801, 2015. https://doi.org/10.1364/OE.23.033792
  9. V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, "Superconducting nanowire single photon detectors fabricated from an amorphous $Mo_{0.75}Ge_{0.25}$ thin film," Appl. Phys. Lett., vol. 105(2), pp. 022602, 2014. https://doi.org/10.1063/1.4890277
  10. S. N. Dorenbos, P. Forn-Diaz, T. Fuse, A. H. Verbruggen, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, "Low gap superconducting single photon detectors for infrared sensitivity," Appl. Phys. Lett., vol. 98, pp. 251102, 2011. https://doi.org/10.1063/1.3599712
  11. H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, "Single-photon detection using magnesium diboride superconducting nanowires," Appl. Phys. Lett., vol. 97, pp. 212504, 2010. https://doi.org/10.1063/1.3518723
  12. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Goltsman, K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express, vol. 14(2), pp. 527-534, 2006. https://doi.org/10.1364/OPEX.14.000527
  13. S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, "Superconducting single photon detectors with minimized polarization dependence," Appl. Phys. Lett., vol. 93, pp. 161102, 2008. https://doi.org/10.1063/1.3003579
  14. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, "Jitter analysis of a superconducting nanowire single photon detector," AIP Advances, vol. 3, pp. 072135, 2013. https://doi.org/10.1063/1.4817581
  15. Q. -Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. -Z. Wang, D. F. Santavicca, and K. K. Berggren, "Single-photon imager based on a superconducting nanowire delay line," Nature Photonics, vol. 11, pp. 247-251, 2017. https://doi.org/10.1038/nphoton.2017.35
  16. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, "High-speed and high-efficiency superconducting nanowire single photon detector array," Opt. Express, vol. 21(2), pp. 1440-1447, 2013. https://doi.org/10.1364/OE.21.001440
  17. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths," Nature Photonics, vol. 2, pp. 302-306, 2008. https://doi.org/10.1038/nphoton.2008.51
  18. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, S. W. Nam, "Compact cryogenic self-aligning fiber -to-detector coupling with losses below one percent," Opt. Express, vol. 19(10), pp. 9102-9110, 2011. https://doi.org/10.1364/OE.19.009102
  19. J. L. O'Brien, A. Fufusawa, and J. Vuckovic, "photonic quantum technologies," Nature Photonics, vol. 3, pp. 687-695, 2006.
  20. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, "Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths," Scientific Reports, vol. 5, pp. 10941, 2015. https://doi.org/10.1038/srep10941
  21. R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detectors," Appl. Phys. Lett., vol. 89, pp. 241129, 2006. https://doi.org/10.1063/1.2405870
  22. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, "Entanglement distribution over 300 km of fiber," Opt. Express, vol. 21(20), pp. 23241-23249, 2013. https://doi.org/10.1364/OE.21.023241
  23. B. Hensen, et al., "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres," Nature, vol. 526, pp. 682-686, 2015. https://doi.org/10.1038/nature15759
  24. L. K. Shalm et al., "Strong Loophole-Free Test of Local Realism," Phys. Rev. Lett., vol. 115, pp. 250402, 2015. https://doi.org/10.1103/PhysRevLett.115.250402
  25. M. Giustina et al., "Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons," Phys. Rev. Lett., vol. 115, pp. 250401, 2015. https://doi.org/10.1103/PhysRevLett.115.250401
  26. D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, "UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap," Opt. Express, vol. 25(8), pp. 8705-8720, 2017. https://doi.org/10.1364/OE.25.008705