Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor

  • ;
  • 정종완 (세종대학교 나노신소재공학과) ;
  • 임익태 (전북대학교 기계설계공학부)
  • Ramadan, Zaher (Mechanical Design Engineering, Chonbuk National University) ;
  • Jung, Jongwan (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Im, Ik-Tae (Mechanical Design Engineering, Chonbuk National University)
  • 투고 : 2017.07.24
  • 심사 : 2017.09.22
  • 발행 : 2017.09.30

초록

Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

키워드

참고문헌

  1. K. Fujino, Y. Nishimoto, N. Tokumasu and K. Maeda, Journal of The Electrochemical Society 137 (9), 2883 (1990) https://doi.org/10.1149/1.2087093
  2. S. M. Fisher, H. Chino, K. Maeda and Y. Nishimoto, Solid state technology 36 (9), 55 (1993)
  3. J. Regolini, D. Bensahel, E. Scheid and J. Mercier, Applied Physics Letters 54 (7), 658 (1989) https://doi.org/10.1063/1.100910
  4. T. Hsieh, K. Jung, D. Kwong and S. Lee, Journal of the Electrochemical Society 138 (4), 1188 (1991) https://doi.org/10.1149/1.2085739
  5. T. Sedgwick, M. Berkenblit and T. Kuan, Applied Physics Letters 54 (26), 2689 (1989) https://doi.org/10.1063/1.101036
  6. A. Ishitani, T. Takada and Y. Ohshita, Journal of applied physics 63 (2), 390 (1988) https://doi.org/10.1063/1.340250
  7. P. Coon, P. Gupta, M. L. Wise and S. George, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10 (2), 324 (1992) https://doi.org/10.1116/1.578052
  8. P. Coon, M. Wise and S. George, Journal of crystal growth 130 (1-2), 162 (1993) https://doi.org/10.1016/0022-0248(93)90848-Q
  9. M. Hierlemann, A. Kersch, C. Werner and H. Schafer, Journal of The Electrochemical Society 142 (1), 259 (1995) https://doi.org/10.1149/1.2043894
  10. Yeon-Ho Jang, Dong Guk Ko, Ik-Tae Im, "Journal of the Semiconductor & Display Technology, Vol. 15, No. 1, pp. 41-46, (2016)
  11. A. Velea, G. Socol, M. Popescu and A. Galca, Journal of Applied Physics 118 (13), 135712 (2015) https://doi.org/10.1063/1.4932666
  12. S. Hearne, E. Chason, J. Han, J. Floro, J. Figiel, J. Hunter, H. Amano and I. Tsong, Applied physics leters 74 (3), 356 (1999) https://doi.org/10.1063/1.123070
  13. S. Terao, M. Iwaya, R. Nakamura, S. Kamiyama, H. Amano and I. Akasaki, Japanese Journal of Applied hysics 40 (3A), L195 (2001) https://doi.org/10.1143/JJAP.40.L195
  14. A. Krost, A. Dadgar, G. Strassburger and R. Clos, physica status solidi (a) 200 (1), 26 (2003) https://doi.org/10.1002/pssa.200303428
  15. S. Kaushal, K. Sugishima and P. Pandey, Wafer curvature estimation, monitoring, and compensation. Google Patents, (2008),