DOI QR코드

DOI QR Code

Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, H.Y. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Lim, B.T. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Park, H.B. (Power Engineering Research Institute, KEPCO Engineering & Construction Company) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2016.12.22
  • Accepted : 2017.02.15
  • Published : 2017.02.28

Abstract

A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

Keywords

References

  1. B. N. Popov, Corrosion Engineering; Principles and solved problems, p.583, Elsevier Publication, Waltham, USA (2015).
  2. S. W. Dean Jr., R. Dervy, and G. T. Vondembussche, Mater. Perform., 20, 47 (1981).
  3. L. Wang, Corros. Sci., 43, 2281 (2001). https://doi.org/10.1016/S0010-938X(01)00036-1
  4. M. A. Quraishi and R. Sadar, Corrosion, 58, 748 (2002). https://doi.org/10.5006/1.3277657
  5. F. Bentiss, M. Lebrini, H. Vezin, and M. Lagrenee, Mater. Chem. Phys., 87, 18 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.040
  6. E. A. Noor, Corros. Sci., 47, 33 (2004).
  7. G. Trabanelli, Corrosion Inhibitors, F. Mansfield ed., p.28, Marcel Dekker, New York (1970).
  8. M. Cohen, J. Electrochem. Soc., 93, 26 (1948). https://doi.org/10.1149/1.2773786
  9. R. Pyke and M. Cohen, J. Electrochem. Soc., 93, 63 (1948). https://doi.org/10.1149/1.2773792
  10. M. Cohen, R. Pyke, and P. Marier, J. Electrochem. Soc., 96, 254 (1949). https://doi.org/10.1149/1.2776788
  11. S. Matsuda and H. H. Uhlig, J. Electrochem. Soc., 111, 156 (1964). https://doi.org/10.1149/1.2426075
  12. W. D. Robertson, J. Electrochem. Soc., 98, 94 (1951). https://doi.org/10.1149/1.2778118
  13. M. J. Pryor and M. Cohen, J. Electrochem. Soc., 100, 203 (1953). https://doi.org/10.1149/1.2781106
  14. S. Karim, C. M. Mustafa, M. Assaduzzaman, and M. Islam, Chem. Eng. Res. Bull., 14, 87 (2010).
  15. Y. T. Horng and Y. L. Tsai, Corros. Sci. Tech., 2, 233 (2003).
  16. K. T. Kim, H. W. Kim, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, Adv. Mater. Sci. Eng., Article ID 408138 (2015).
  17. I. Carrillo, B. Valdez, R. Zlatev, M. Stoytcheva, M. Carrillo, and R. Bassler, Inter. J. Electrochem. Sci., 7, 8688 (2012).
  18. J. O. Okeniyi, A. P. I. Popoola, C. A. Loto, O. A. Omotosho, S. O. Okpala, and I. J. Ambrose, Adv. Mater. Sci. Eng., Article ID 540395 (2015).
  19. A. M. Ridhwan, A. A. Rahim, and A. M. Shah, Inter. J. Electrochem. Sci., 7, 8091 (2012).
  20. M. Vishnudevan, Iran. J. Mater. Sci. Eng., 9, 17 (2012).
  21. K. T. Kim, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 15, 171 (2016). https://doi.org/10.14773/cst.2016.15.4.171
  22. E. A. Lizlovs, Corrosion, 32, 263 (1976). https://doi.org/10.5006/0010-9312-32.7.263
  23. D. R. Robitaile, Mater. Perform., 15, 40 (1976).
  24. J. Jefferies, Mater. Perform., 31, 50 (1992).
  25. A. M. Shams El Din and L. Wang, Desalination, 107, 29 (1996). https://doi.org/10.1016/0011-9164(96)00148-8
  26. M. Guannan, L. Xianghong, Q. Qing, and Z. Jun, Corros. Sci., 48, 445 (2006). https://doi.org/10.1016/j.corsci.2005.01.013
  27. KS D 4311, Ductile Iron Pipes, Korean Standards Association (2010).
  28. D. D. Macdonald, J. Electrochem. Soc., 139, 3434 (1992). https://doi.org/10.1149/1.2069096
  29. K. T. Kim, H. Y. Chang, B. T. Lim, H. B. Park, and Y. S. Kim, Adv. Mater. Sci. Eng., Article ID 4935602 (2016).

Cited by

  1. Studies on Electrochemical Characteristics of SiGe in Application to Chemical Mechanical Polishing vol.7, pp.5, 2018, https://doi.org/10.1149/2.0021805jss
  2. The Effect of Tungstate and Ethanolamines Added in Tap Water on Corrosion Inhibition of Ductile Cast Iron Pipe for Nuclear Power Plants vol.10, pp.12, 2020, https://doi.org/10.3390/met10121597