DOI QR코드

DOI QR Code

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Zuo, Xiao-Bao (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Tang, Yu-Juan (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Ayinde, Olawale (Department of Civil Engineering, Nanjing University of Science & Technology) ;
  • Ding, Dong-Nan (Department of Civil Engineering, Nanjing University of Science & Technology)
  • Received : 2016.06.16
  • Accepted : 2016.11.16
  • Published : 2017.02.25

Abstract

This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Jiangsu Province Science Foundation

References

  1. Bassuoni, M.T. and Nehdi, M.L. (2009), "Durability of selfconsolidating concrete to sulfate attack under combined cyclic environments and flexural loading", Cement Concrete Res., 39(3), 206-226. https://doi.org/10.1016/j.cemconres.2008.12.003
  2. Cao, S. (1991), "Mechanical properties of corroded concrete", J. Southeast Univ., 21(4), 89-95.
  3. Etse, G. and Willam, K. (1999), "Failure analysis of elastoviscoplastic material models", J. Eng. Mech., 125(1), 60-69. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(60)
  4. Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", J. Solids Struct., 35(14), 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
  5. Gao, J., Yu, Z., Song, L., Wang, T. and Wei, S. (2013), "Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles", Constr. Build. Mater., 39, 33-38. https://doi.org/10.1016/j.conbuildmat.2012.05.033
  6. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", J. Solids Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
  7. Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: A plasticity theory with a novel hardening law", J. Solids Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0
  8. Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2010), "Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments", J. Mater. Civil Eng., 22(4), 403-407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034
  9. Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Chemomechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model", Cement Concrete Compos., 33(3), 411-423. https://doi.org/10.1016/j.cemconcomp.2010.12.001
  10. Kalipcilar, I., Mardani, A., Sezer A. and Altun, S. (2016), "Assessment of the effect of sulfate attack on cement stabilized montmorillonite", Geomech. Eng., 10(6), 807-826. https://doi.org/10.12989/gae.2016.10.6.807
  11. Lee, S.T., Hooton, R.D., Jung, H., Park, D. and Choi, C.S. (2008), "Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature", Cement Concrete Res., 38(1), 68-76. https://doi.org/10.1016/j.cemconres.2007.08.003
  12. Liang, Y.N. and Yuan, Y.S. (2005), "Effects of environmental factors of sulfate attack on deterioration of concrete mechanical behavior", J. China Univ. Min. Technol., 34(4), 452-457.
  13. Liu, T., Zou, D., Teng, J. and Yan, G. (2012b), "The influence of sulfate attack on the dynamic properties of concrete column", Constr. Build. Mater., 28(1), 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036
  14. Liu, Z., Deng, D., Schutter, G.D. and Yu, Z. (2012a), "Chemical sulfate attack performance of partially exposed cement and cement+fly ash paste", Constr. Build. Mater., 28(1), 230-237. https://doi.org/10.1016/j.conbuildmat.2011.08.071
  15. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  16. Mazars, J. and Pyaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  17. Menetrey, P. and Willam, K. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
  18. Nehdi, M.L., Suleiman, A.R. and Soliman, A.M. (2014), "Investigation of concrete exposed to dual sulfate attack", Cement Concrete Res., 64, 42-53. https://doi.org/10.1016/j.cemconres.2014.06.002
  19. Neville, A. (2004), "The confused world of sulfate attack on concrete", Cement Concrete Res., 34(8), 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
  20. Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H. and Huang, B. (2015), "Numerical simulation of fly ash concrete under sulfate attack", Constr. Build. Mater., 84, 261-268. https://doi.org/10.1016/j.conbuildmat.2015.02.088
  21. Saetta, A., Scotta, R. and Vitaliani, R. (1998), "Mechanical behavior of concrete under physical-chemical attacks", J. Eng. Mech., 124(10), 1100-1109. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1100)
  22. Samson, E. and Marchand, J. (2007), "Modeling the transport of ions in unsaturated cement-based materials", Comput. Struct., 85(23-24), 1740-1756. https://doi.org/10.1016/j.compstruc.2007.04.008
  23. Santhanam, M., Cohen, M.D. and Olek, J. (2003), "Effects of gypsum formation on the performance of cement mortars during external sulfate attack", Cement Concrete Res., 33(3), 325-332. https://doi.org/10.1016/S0008-8846(02)00955-9
  24. Sarkar, S., Mahadevan, S., Meeussen, J.C.L., Sloot, H.V.D. and Kosson, D.S. (2010), "Numerical simulation of cementitious materials degradation under external sulfate attack", Cement Concrete Compos., 32(3), 241-252. https://doi.org/10.1016/j.cemconcomp.2009.12.005
  25. Schneider, U. and Chen, S.W. (1998), "Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials", Mater. Struct., 31(10), 662-668. https://doi.org/10.1007/BF02480442
  26. Shao, J.F., Jia, Y., Kondo, D. and Chiarelli, A.S. (2006), "A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions", Mech. Mater., 38(3), 218-232. https://doi.org/10.1016/j.mechmat.2005.07.002
  27. Sun, C., Chen, J., Zhu, J., Zhang, M. and Ye, J. (2013), "A new diffusion model of sulfate ions in concrete", Constr. Build. Mater., 39, 39-45. https://doi.org/10.1016/j.conbuildmat.2012.05.022
  28. Sun, W. and Zuo, X.B. (2012), "Numerical simulation of sulfate diffusivity in concrete under combination of mechanical loading and sulfate environments", J. Sustain. Cement-Based Mater., 1(1-2), 46-55. https://doi.org/10.1080/21650373.2012.728564
  29. Taqieddin, Z.N., Voyiadjis, G.Z. and Almasri, A.H. (2012), "Formulation and verification of a concrete model with strong coupling between isotropic damage and elastoplasticity and comparison to a weak coupling model", J. Eng. Mech., 138(5), 530-541. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000344
  30. Taylor, H.F.W., Famy, C. and Scrivener, K.L. (2001), "Delayed ettringite formation", Cement Concrete Res., 31(5), 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
  31. Tixier, R. and Mobasher, B. (2003), "Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation", J. Mater. Civil Eng., 15(4), 305-313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
  32. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release ratebased plastic-damage model for concrete", J. Solids Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038
  33. Xiong, C.S., Jiang, L.H., Zhang, Y. and Chu, H.Q. (2015), "Modeling of damage in cement paste subject to external Sulfate attack", Comput. Concrete, 16(6), 847-864. https://doi.org/10.12989/cac.2015.16.6.847
  34. Yang, D.Y., We, S.N. and Tan, Y.Q. (2005), "Performance evaluation of binary blends of portland cement and fly ash with complex admixture for durable concrete structures", Comput. Concrete, 2(5), 381-388 https://doi.org/10.12989/cac.2005.2.5.381
  35. Yuan, J., Liu, Y., Tan, Z.C. and Zhang, B.K. (2016), "Investigating the failure process of concrete under the coupled actions between sulfate attack and drying-wetting cycles by using x-ray CT", Constr. Build. Mater., 108, 129-138. https://doi.org/10.1016/j.conbuildmat.2016.01.040
  36. Yu, Y., Zhang, Y.X. and Khennane, A. (2015), "Numerical modelling of degradation of cement-based materials under leaching and external sulfate attack", Comput. Concrete, 158, 1-14.
  37. Yu, S.W. and Feng, X.Q. (1997), "Damage mechanics", Tsinghua University Press, Beijing, China.
  38. Zeng, L.F., Horrigmoe, G. and Andersen, R. (1996), "Numerical implementation of constitutive integration for rate-independent elastoplasticity", Comput. Mech., 18(5), 387-396. https://doi.org/10.1007/BF00376135
  39. Zheng, F.G., Wu, Z., Gu, C., Bao, T. and Hu, J. (2012), "A plastic damage model for concrete structure cracks with two damage variables", Sci. China Technol. Sci., 55(11), 2971-2980. https://doi.org/10.1007/s11431-012-4983-6
  40. Zhou, Y., Li, M., Sui, L. and Xing, F. (2016), "Effect of sulfate attack on the stress-strain relationship of FRP-confined concrete", Constr. Build. Mater., 110, 235-250. https://doi.org/10.1016/j.conbuildmat.2015.12.038
  41. Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012a), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 47-51.
  42. Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concrete, 7(5), 421-435. https://doi.org/10.12989/cac.2010.7.5.421
  43. Zuo, X.B., Sun, W. and Yu, C. (2012b), "Numerical investigation on expansive volume strain in concrete subjected to sulfate attack", Constr. Build. Mater., 36(4), 404-410. https://doi.org/10.1016/j.conbuildmat.2012.05.020
  44. Zuo, X.B., Wang, J.L., Sun, W., Li, H. and Yin, G.J. (2017), "Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack", Comput. Concrete, 19(1), 19-31. https://doi.org/10.12989/cac.2017.19.1.019

Cited by

  1. The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.205
  2. X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2017, https://doi.org/10.12989/cac.2018.21.4.367
  3. Experimental study and modeling on stress-strain curve of sulfate-corroded concrete vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.001