DOI QR코드

DOI QR Code

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform

수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구

  • Namgung, Hyeong-Gyu (Transportation Environmental Research Team, Korea Railroad Research Institute(KRRI)) ;
  • Park, Sechan (Transportation Environmental Research Team, Korea Railroad Research Institute(KRRI)) ;
  • Kim, Minhae (Transportation Environmental Research Team, Korea Railroad Research Institute(KRRI)) ;
  • Kim, Soo-Yeon (Transportation Environmental Research Team, Korea Railroad Research Institute(KRRI)) ;
  • Kwon, Soon-Bark (Transportation Environmental Research Team, Korea Railroad Research Institute(KRRI))
  • 남궁형규 (한국철도기술연구원 교통환경연구팀) ;
  • 박세찬 (한국철도기술연구원 교통환경연구팀) ;
  • 김민해 (한국철도기술연구원 교통환경연구팀) ;
  • 김수연 (한국철도기술연구원 교통환경연구팀) ;
  • 권순박 (한국철도기술연구원 교통환경연구팀)
  • Received : 2017.01.02
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

최근 국내 도시철도 지하역사에는 승강장 안전문의 설치로 인한 승강장의 급 배기 불균형이 일어나며, 이러한 불균형은 승강장 내 오염물질 축적과 환기부족에 의한 쾌적성 저하를 일으키는 원인이 된다. 본 연구에서는 시뮬레이션 유동해석 프로그램을 이용하여 지하역사 바닥배기 시스템의 최적화 설계를 하고, 제작된 바닥배기 시스템의 미세먼지 제거 성능을 실험으로 검증하였다. 바닥배기 시스템의 시뮬레이션 유동해석은 CFX 17.0 프로그램을 이용하였으며, HEEDS를 최적화 소프트웨어로 적용하였다. 3차에 걸쳐 이루어진 최적화 결과, 약 430 Pa의 차압과 61%의 미세먼지 제거 성능을 갖는 전체높이 1.78 m의 바닥배기 시스템이 도출되었다. 최적화 설계에 따라 실규모로 제작된 바닥배기 시스템을 이용하여 미세먼지 집진 성능 실험을 실시하였으며, 약 65%의 집진효율을 보임으로써 수치해석을 통해 도출된 최적설계 결과와 유사한 수준임을 검증하였다. 결과적으로 최적화 프로그램을 활용한 바닥배기 시스템의 설계가 급배기 불균형을 갖고 있는 지하역사 승강장에 적용 가능함을 확인하였으며, 설계된 바닥배기 시스템이 공간상의 제약으로 추가적인 배기설비 설치가 어려운 기존 지하 역사에서 배기개선 및 미세먼지 제거에 효과적으로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Jeon, J. S., Yoon, J. C., Lee, H. C., Eom, S. W. and Chae, Y. Z., A noticeable change in indoor Radon levels after platform screen doors installation in Seoul subway station, Journal of Korean Society for Atmospheric Environment, 28(5), pp. 59-67, 2012. DOI: https://doi.org/10.5572/KOSAE.2012.28.1.059
  2. Kwon, S. B., Namgung, H. G., Jeong, W., Park, D. and Eom, J. K., Transient variation of aerosol size distribution in an underground subway station. Environmental Monitoring and Assessment, 188(362), pp. 1-11,2016. DOI: https://doi.org/10.1007/s10661-016-5373-5
  3. Lee, T. J., Jeon, J. S., Kim, S. D. and Kim, D. S., A comparative study on PM10 source contributions in a Seoul metropolitan subway station before/after installing platform screen doors, Journal of Korean Society for Atmospheric Environment, 26(5), pp. 543-553, 2010. DOI: https://doi.org/10.5572/KOSAE.2010.26.5.543
  4. Kwon, S. B., Song, J. H., Ryu, J. H., Jo, S. W., Oh, T. S., Bae, S. J. and Kim, H. K., A study on the improvement of the air exhaust system at the PSD installed subway station. Journal of Korean Tunnelling and Underground Space Association, 17(3), pp. 353-362, 2015. DOI: https://doi.org/10.9711/KTAJ.2015.17.3.353
  5. Cheng, Y. H., Lin, Y. L. and Liu, C. C., Levels of PM10 and PM2.5 in Taipei rapid transit system. Atmospheric Environment, 42, pp. 7242-4249, 2008. DOI: https://doi.org/10.1016/j.atmosenv.2008.07.011
  6. Kam, W., Cheung, K., Daher, N. and Sioutas, C., Particulate mateer (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro, Atmospheric Environment, 45, pp. 1506-1516, 2011. DOI: https://doi.org/10.1016/j.atmosenv.2010.12.049
  7. Martins, V., Moreno,T., Minguillon, M. C., van Drooge, B. L., Reche, C., Amato, F., de Miguel, E., Capdevila, M., Centelles, S. and Querol, X., Origin of inorganic and organic components of PM2.5 in subway station of Barcelona, Spain. Environmental Pollution, 208, pp. 125-136, 2016. DOI: https://doi.org/10.1016/j.envpol.2015.07.004
  8. Namgung, H. G., Song, J. H., Kim, S. Y., Kim, H. M. and Kwon, S. B., Characteristics of indoor air quality in the overground and underground railway stations. Journal of the Korea Academia-Industrial, 17(5), pp. 17-25, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.5.17
  9. Park, J. H., Park, J. C. and Um, S. J., Estimation of diffusion direction and velocity of PM10 in a subway station(for Gaehwasan station of subway line 5 in seoul), Journal of Korean Society of Transportation, 28(5), pp. 55-64, 2010.
  10. Son, Y. S., Salama, A., Jeong, H. S., Kim, S., Jeong, J. H., Lee, J., Sunwoo, Y. and Kim, J. C., The effect of platform screen doors on PM10 levels in a subway station and a trial to reduce PM10 in tunnels, Asian Journal of Atmospheric Environment, 7(1), pp. 38-47, 2013. DOI: https://doi.org/10.5572/ajae.2013.7.1.038
  11. Park, I. H., Lee, Y. K., Jang, C. M. and Choi, Y. S., Introduction of turbomachinery optimization using HEEDS and CFX, Korean Society for Fluid Machinery, Proceedings of the KFMA Annual Meeting, pp. 161-162, 2014.
  12. Lee, Y. K., Shin, J. H., Park, I. H., Kim, S., Lee, K. Y. and Choi, Y. S., Mixed-flow pump impeller-diffuser optimization method by using CFX and HEEDS, Transactions of the Korean Society of Mechanical Engineers, 39(10), pp. 831-842, 2015. DOI: https://doi.org/10.3795/KSME-A.2015.39.9.831
  13. Sanders, P. G., Xu, N., Dalka, T. M. and Maricq, M. M., Airborne brake wear debris: size distribution, composition, and a comparison of dynamometer and vehicle tests, Environmental Science and Technology, 37, pp. 4060-4069, 2003. DOI: https://doi.org/10.1021/es034145s