DOI QR코드

DOI QR Code

Image Processing Algorithm for Crack Detection of Sewer with low resolution

저해상도 하수관거의 균열 탐지를 위한 영상처리 알고리즘

  • Son, Byung Jik (Department of International Civil & Plant Engineering, Konyang University) ;
  • Jeon, Joon Ryong (Department of International Civil & Plant Engineering, Konyang University) ;
  • Heo, Gwang Hee (Department of International Civil & Plant Engineering, Konyang University)
  • 손병직 (건양대학교 해외건설플랜트학과) ;
  • 전준용 (건양대학교 해외건설플랜트학과) ;
  • 허광희 (건양대학교 해외건설플랜트학과)
  • Received : 2016.10.27
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

In South Korea, sewage pipeline exploration devices have been developed using high resolution digital cameras of 2 mega-pixels or more. On the other hand, most devices are less than 300 kilo-pixels. Moreover, because 100 kilo-pixels devices are used widely, the environment for image processing is very poor. In this study, very low resolution ($240{\times}320$ = 76,800 pixels) images were adapted when it is difficult to detect cracks. Considering that the images of sewers in South Korea have very low resolution, this study selected low resolution images to be investigated. An automatic crack detection technique was studied using digital image processing technology for low resolution images of sewage pipelines. The authors developed a program to automatically detect cracks as 6 steps based on the MATLAB functions. In this study, the second step covers an algorithm developed to find the optimal threshold value, and the fifth step deals with an algorithm to determine cracks. In step 2, Otsu's threshold for images with a white caption was higher than that for an image without caption. Therefore, the optimal threshold was found by decreasing the Otsu threshold by 0.01 from the beginning. Step 5 presents an algorithm that detects cracks by judging that the length is 10 mm (40 pixels) or more and the width is 1 mm (4 pixels) or more. As a result, the crack detection performance was good despite the very low-resolution images.

국내에서 하수관로 탐사장치는 200만 화소 이상의 고해상도 디지털 카메라를 이용한 제품이 개발되어 있으나 30만 화소 이하의 장치가 대부분 사용되고 있다. 특히, 10만화소 이하의 장치가 아직도 많이 사용되고 있어, 영상처리를 위한 환경이 매우 열악하다. 본 연구에서 다루는 하수관 영상은 매우 저해상도($240{\times}320$ = 76,800화소)로 균열탐지가 매우 어렵다. 국내에서 이러한 저해상도 하수관거 영상이 대부분이기 때문에, 이를 연구대상으로 선택하였다. 이러한 저해상도 영상으로 하수 관거의 균열을 자동으로 탐지하는 기법을 디지털 영상처리 기술을 이용하여 연구하였다. 총8단계를 거쳐 균열을 자동으로 탐지하는 프로그램을 개발하였으며, 기본적으로 Matlab 프로그램의 함수를 이용하였다. 2단계에서 최적의 임계값을 찾는 알고리즘과 5단계에서 균열을 판단하는 알고리즘을 개발하였다. 2단계는 자막이 흰색이기 때문에 자막이 없는 원래 영상보다 Otsu's 임계값(threshold)이 높게 계산이 되는 점에 착안하여 Otsu 임계값을 시작으로 0.01씩 감소시키면서 최적의 임계값을 찾는 방법 알고리즘이며, 5단계는 길이가 10mm(40픽셀) 이상이고 폭이 1mm(4픽셀) 이상으로 판단하여, 균열을 탐지하는 알고리즘이다. 해석 결과 매우 저해상도 영상임에도 불구하고 균열 탐지 결과가 우수한 것으로 판단된다.

Keywords

References

  1. Kim, B. C., Son, B. J., Choi, C. H., and Park, K. T. (2015), Damage Estimation of Sewer Pipe using Image Processing of the Investigation Video, Paper presented at the Proceedings of Korean Society of Civil Engineers Conference, Kunsan, Republic of Korea, 2015.
  2. Son, B. J., Lee, S. Y. (2015), "Study on Fracture Area Measurement of Tension Specimen using Digital Image Processing", The Conference of The Korean Society for Advanced Composite Structures, pp. 45-46, 2015.
  3. Xu, K., Lxmoore, A. R., and Davies, T. (1998), Sewer pipe deformation assessment by image analysis of video surveys, Pattern Recognition, 31(2), 169-180, 1998. DOI: https://doi.org/10.1016/S0031-3203(97)00037-X
  4. McKim, R. A., and Sinha, S. K. (1999), Condition assessment of underground sewer pipes using a modified digital image processing paradigm, Tunnelling and Underground Space Technology, 14, 29-37, 1999. DOI: https://doi.org/10.1016/S0886-7798(00)00021-3
  5. Moselhi, O., and Shehab-Eldeen, T. (1999), Automated detection of surface defects in water and sewer pipes, Automation in Construction, 8(5), 581-588, 1999. DOI: https://doi.org/10.1016/S0926-5805(99)00007-2
  6. Yang, M. D., and Su, T. C. (2008), Automated diagnosis of sewer pipe defects based on machine learning approaches, Expert Systems with Applications, 35(3), 1327-1337, 2008. DOI: https://doi.org/10.1016/j.eswa.2007.08.013
  7. Yang, M. D., Su, T. C., Pan, N. F., and Yang, Y. F. (2011), Systematic image quality assessment for sewer inspection, Expert Systems with Applications, 38(3), 1766-1776, 2011. DOI: https://doi.org/10.1016/j.eswa.2010.07.103
  8. MathWorks, I. (2015). Matlab Image Processing Toolbox (Version 2014).
  9. N. Otsu (1979), "A threshold selection method from gray-level histograms," in IEEE Trans. Syst., Man, Cybern., vol. 9, pp. 62-66, 1979. DOI: https://doi.org/10.1109/TSMC.1979.4310076
  10. M. M. Fraz, M. Javed, and A. Basit (2008), "A threshold selection method from gray-level histograms," in 4th IEEE International Conference on Emerging Technologies, pp. 232-236, 2008.
  11. Ahrary, A., Tian, L., Kamata, S., and Ishikawa, M. (2005), An autonomous sewer robots navigation based on stereo camera information, Paper presented at the International Conference on Tools with Artificial Intelligence, 2005. DOI: https://doi.org/10.1109/ictai.2005.35
  12. Duran, O., Althoefer, K., and Seneviratne, L. D. (2002), State of the art in sensor technologies for sewer inspection, Sensors Journal, IEEE, 2(2), 73-81, 2002. DOI: https://doi.org/10.1109/JSEN.2002.1000245
  13. Esquivel, S., Koch, R., and Rehse, H. (2009), Reconstruction of sewer shaft profiles from fisheye-lens camera images Pattern Recognition (pp.332-341): Springer, 2009. DOI: https://doi.org/10.1007/978-3-642-03798-6_34
  14. Ilg, W., Berns, K., Cordes, S., Eberl, M., and Dillmann, R. (1997), A wheeled multijoint robot for autonomous sewer inspection, Paper presented at the Proceedings of the International Conference on Intelligent Robots and Systems, 1997. DOI: https://doi.org/10.1109/iros.1997.656584
  15. ME (2011), Standard Manual for Sewer CCTV Inspection and Repair Criterion: Ministry of Environment, 2011.