DOI QR코드

DOI QR Code

Effect of Change in Water Content and NCO Index on the Static Comfort of Polyurethane Seat Foam Pad for Automobiles

물 함량과 NCO Index 변화가 자동차용 폴리우레탄 시트 폼 패드의 정적 안락감에 미치는 영향 고찰

  • 이병준 (경기대학교 화학공학과) ;
  • 이성훈 (현대자동차 감성재료연구팀) ;
  • 최권용 (현대자동차 감성재료연구팀) ;
  • 김상범 (경기대학교 화학공학과)
  • Received : 2016.11.08
  • Accepted : 2016.11.25
  • Published : 2017.02.10

Abstract

In this study, we identified how the water content change in various NCO index affects the static comfort of polyurethane seat foam pad for automobiles. In order to identify factors that affect the static comfort, a static load test was performed using UTM to plot a hysteresis curve. The hardness of the foam when it was modified by 25, 65%, hysteresis loop area, hysteresis loss (%), and Sag factor were also obtained. By measuring the swelling ratio, it was confirmed that, as the water content increased in a fixed NCO index, the hardness and crosslinking density increased while the restoring force decreased due to the increase of urea bond. Also the Sag factor decreased due to the increase of surface hardness. As the NCO index increased in a fixed water content, the urethane and urea bond reacted more with isocyanate, leading to an increase in hardness and decrease in restoring force.

본 연구에서는 다양한 NCO index에서 물 함량 변화가 자동차용 폴리우레탄 시트 폼 패드의 정적 안락감에 미치는 영향을 알아보았다. 정적 안락감에 영향을 미치는 요인을 파악하기 위해 UTM을 사용한 정하중 특성 시험을 통하여 히스테리시스 곡선을 나타냈으며, 이를 통해 25% 변형 시 경도와 65% 변형 시 경도, hysteresis loop area, hysteresis loss (%), 그리고 Sag factor를 구하였다. 동일한 NCO index에서 물 함량이 증가함에 따라 우레아 결합의 증가로 경도가 증가하고, 가교밀도가 증가하는 경향을 swelling ratio 측정으로 확인하였으며, 이에 따라 복원력은 감소하는 경향을 확인하였다. 또한 표면 경도의 증가로 인해 Sag factor가 감소하는 경향을 확인하였다. 동일한 물 함량에서 NCO index가 증가함에 따라 우레탄과 우레아 결합이 이소시아네이트와 추가 반응하여 가교도와 경도가 증가하고 이에 따라 복원력이 감소함을 확인하였다.

Keywords

References

  1. P. Cinelli, I. Anguillesi, and A. Lazzeri, Green synthesis of flexible polyurethane foams from liquefied lignin, Eur. Polym. J., 49(6), 1174-1184 (2013). https://doi.org/10.1016/j.eurpolymj.2013.04.005
  2. Y. Lei, S. Zhou, H. Zou, and M. Liang, Effect of crosslinking density on resilient performance of low-resilience flexible polyurethane foams, Polym. Eng. Sci., 55(2), 308-315 (2015). https://doi.org/10.1002/pen.23888
  3. S. K. Kang, I. S. Cho, and S. B. Kim, Effect of isocyanate index on the physical properties of rigid polyurethane foam under sea water, J. Korean Ind. Eng. Chem., 19(4), 427-431 (2008).
  4. S. W. Lee, J. H. Kim, K. H. Kim, Y. K. Yang, C. I. Ahn, and Y. C. Myong, The relationship between blowing agents and inner temperature at the preparation of flexible polyurethane forams, J. Korean Oil Chem. Soc., 16(2), 179-185 (1999).
  5. G. Wegener, M. Brandt, L. Duda, J. Hofmann, B. Klesczewski, D. Koch, R. J. Kumpf, H. Orzesek, H. G. Pirkl, C. Six, C. Steinlein, and M. Weisbeck, Trends in industrial catalysis in the polyurethane industry, Appl. Catal. A, 221(1-2), 303-335 (2001). https://doi.org/10.1016/S0926-860X(01)00910-3
  6. I. Javni, K. Song, J. Lin, and Z. S. Petrovic, Structure and properties of flexible polyurethane foams with nano-and micro-fillers, J. Cell. Plast., 47(4), 357-372 (2011). https://doi.org/10.1177/0021955X11398115
  7. Y. Lin, F. Hsieh, and H. E. Huff, Water-blown flexible polyurethane foam extended with biomass materials, J. Appl. Polym. Sci., 65(4), 695-703 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970725)65:4<695::AID-APP8>3.0.CO;2-F
  8. B. J. Rashmi, D. Rusu, K. Prashantha, M. F. Lacrampe, and P. Krawczak, Development of water-blown bio-based thermoplastic polyurethane foams using bio-derived chain extender, J. Appl. Polym. Sci., 128(1), 292-303 (2013). https://doi.org/10.1002/app.38183
  9. M. Petru and J. Petrik, Systems to optimize comfort and developments of car seat, Acta Technica Corviniensis - Bull. Eng., 4(2), 55-59 (2009).
  10. M. H. Courtney, L. J. Charlton, and K. Seel, Influence of foam density on automobile seat performance, J. Cell. Plast., 25(5), 472-486 (1989). https://doi.org/10.1177/0021955X8902500505
  11. J. P. Armistead, G. L. Wilkes, and R. B. Turner, Morphology of water-blown flexible polyurethane foams, J. Appl. Polym. Sci., 35(3), 601-629 (1988). https://doi.org/10.1002/app.1988.070350305
  12. K. Ebe and M. J. Griffin, Factors affecting static seat cushion comfort, Ergonomics, 44(10), 901-921 (2001). https://doi.org/10.1080/00140130110064685
  13. S. K. Jeoung, P. C. Lee, B. R. Kim, K. D. Lee, W. K. Lee, and H. J. Kwon, A study of flame resistant polyurethane foam in engine room of automotive, KSAE Spring Conference Proceedings, 933-934 (2015).
  14. T. H. Kim, D. Y. Kim, H. Y. Kim, J. S. Oh, S. H. Lee, K. Y. Choi, B. H. Park, and C. K. Yim, Prediction of supporting behavior for seat foam pad considering viscoelastic properties, KSAE 2012 Annual Conference and Exhibition, 11, 1877-1879 (2012).
  15. V. Filegel and R. Martonka, Characteristics of PU foams at long term static and dynamic loading, Appl. Mech. Mater., 732, 149-152 (2015). https://doi.org/10.4028/www.scientific.net/AMM.732.149
  16. C. H. Hong, H. S. Back, K. M. Kim, S. Y. Kim, S. M. Choi, and T. W. Hwang, Polyurethane flexible foam for automotive seat cushion having both superior static and dynamic properties, Polym. Korea, 31(1), 47-52 (2007).
  17. J. Lee and P. Ferraiuolo, Seat comfort, SAE Technical Papers, No. 930105 (1993).
  18. H. Wada, Y. Toyota, A. Horie, T. Sasaki, C. Suzuki, and H. Fukuda, Automotive seating foams with excellent riding comfort prepared by a novel polypropylene glycol, Polym. J., 40, 842-845 (2008). https://doi.org/10.1295/polymj.PJ2008098
  19. H. W. Wolfe, Cushioning and fatigue, In: N. C. Hilyard (ed.), Mechanics of Cellular Plastics, Applied Science Publishers, UK, 99-142 (1982).
  20. N. C. Hilyard and P. Collier, Effect of vehicle seat cushion material on ride comfort, Plastic on the Road, The Plastic and Rubber Institute International Conference, December 5-6, London (1984).
  21. M. Modesti and A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams, Eur. Polym. J., 37(5), 949-954 (2001). https://doi.org/10.1016/S0014-3057(00)00209-3
  22. J. S. Oh, D. Y. Kim, T. H. Kim, H. Y. Kim, S. H. Lee, and K. Y. Choi, Numerical prediction of the viscoelastic deformation of seat foam in response to long-term driving, Proc. Inst. Mech. Eng. D: J. Automobile Eng., 1-12 (2014).
  23. S. Li, R. Vatanparast, and H. Lemmetyinen, Cross-linking kinetics and swelling behaviour of aliphatic polyurethane, Polym., 41(15), 5571-5576 (2000). https://doi.org/10.1016/S0032-3861(99)00785-5
  24. S. W. White, S. K. Kim, A. K. Bajaj, P. Davies, D. K. Showers, and P. E. Liedtke, Experimental techniques and identification of nonlinear and viscoelastic properties of flexible plyurethane foam, Nonlinear Dyn., 22(3), 281-303 (2000). https://doi.org/10.1023/A:1008302208269
  25. C. S. Shim, J. S. Oh, and C. K. Hong, Improving light stability of nature rubber latex foam, Elast. Compos., 50(2), 81-86 (2015). https://doi.org/10.7473/EC.2015.50.2.081
  26. Y. C. Chern, S. M. Tseng, and K. H. Hsieh, Damping properties of interpenetrating polymer networks of polyurethane-modifed epoxy and polyurethanes, J. Appl. Polym. Sci., 74(2), 328-335 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991010)74:2<328::AID-APP14>3.0.CO;2-W
  27. C. R. Mehta and V. K. Tewari, Damping characteristics of seat cushion materials for tractor ride comfort, J. Terramech., 47(6), 401-406 (2010). https://doi.org/10.1016/j.jterra.2009.11.001
  28. M. van der Schuur, E. van der Heide, J. Feijen, and R. J. Gaymans, Elastic behavior of flexible polyether(urethane-urea) foam materials, Polym., 45(8), 2721-2727 (2004). https://doi.org/10.1016/j.polymer.2004.02.016
  29. C. S. Wong and K. H. Badri, Chemical analyses of palm kernel oil-based polyurethane prepolymer, Mater. Sci. Appl., 3, 78-86 (2012).
  30. J. Y. Jang, Y. K. Jhon, I. W. Cheong, and J. H. Kim, Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion, Colloids Surf., 196(2-3), 135-143 (2002). https://doi.org/10.1016/S0927-7757(01)00857-3
  31. M. Ravey and E. M. Pearce, Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam, J. Appl. Polym. Sci., 63(1), 47-74 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-S
  32. T. M. Rogge, C. V. Stevens, A. Vandamme, K. Booten, B. Levecke, C. D'hooge, B. Haelterman, and J. Corthouts, Application of ethoxylated inulin in water-blown polyurethane foams, Biomacromolecules, 6(4), 1992-1997 (2005). https://doi.org/10.1021/bm050006m