DOI QR코드

DOI QR Code

Study on Physical Properties of Maleic anhydride Grafted Polypropylene (PP)/Kenaf Fiber (KF) Composites

말레인산 무수물 그래프트 폴리프로필렌/케나프 섬유 복합체의 물성에 대한 연구

  • Ku, Sun Gyo (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Yu Shin (Major in Polymer Science and Engineering, Kongju National University) ;
  • Hong, Young Eun (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Dong Won (Seoyounewha) ;
  • Kim, Ki Sung (Seoyounewha) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • Received : 2016.11.21
  • Accepted : 2016.12.10
  • Published : 2017.02.10

Abstract

Maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) copolymers were prepared by changing MAH and styrene monomer (SM) content, using a twin screw extruder at $190^{\circ}C$. The grafting degree was measured by non-aqueous back titration method. The grafting degree of PP-g-MAH-SM copolymer was higher than that of PP-g-MAH at the same MAH content. PP-g-MAH-SM/kenaf fiber (KF) composites were also prepared by using a PP-g-MAH as a matrix at $200^{\circ}C$ and the KF content was fixed at 20 wt%. Based on the degradation temperature investigated by TGA, the thermal stability of PP-g-MAH-SM/KF composites was more enhanced than that of PP-g-MAH only. Mechanical properties of the composites were also improved when MAH and SM applied together. The adhesion degree between the copolymer and KF was confirmed by both SEM pictures of the fractured surface and contact angles.

이축압출기(twin screw extruder)를 이용하여 $190^{\circ}C$에서 말레인산 무수물(maleic anhydride, MAH)과 스티렌 모노머(styrene monomer, SM)의 함량을 변화시켜가며 MAH와 SM이 그래프트된 폴리프로필렌(PP-g-MAH-SM) 공중합체를 제조하였다. 제조한 PP-g-MAH-SM 공중합체의 그래프트율은 비수용성 역적정을 통하여 측정하였으며, 동일한 MAH 함량에서 SM이 사용된 경우 높은 그래프트율을 나타내었다. 그래프트율에 따른 PP-g-MAH-SM/케나프섬유(kenaf fiber, KF) 복합체를 $200^{\circ}C$에서 제조하였고, KF의 함량은 20 wt%로 고정시켰다. 복합체에 대한 열중량분석기(TGA)의 분해온도에 따르면, MAH 만 적용된 PP-g-MAH 보다 MAH와 SM이 함께 적용된 PP-g-MAH-SM 복합체의 열안정성이 다소 우세하였다. 복합체의 기계적 강도 또한 MAH와 SM이 함께 적용된 경우에 개선정도가 우수하였다. 계면접착정도는 파단면의 SEM과 접촉각으로 확인하였다.

Keywords

References

  1. S. H. Yoon, C. H. Jeong, M. H. Min, and W. J. Seo, Development trend of automotive chemical and textile materials, Korean Ind. Chem. News, 16, 26-36 (2013).
  2. K. H. Kim, Types and development trend of lightweight metal materials for automobiles, Trends Metals Mater. Eng., 27, 4-9 (2014).
  3. K. H. Kim, D. H. Cho, and J. H. Kim, Fabrication and properties of natural fiber-reinforced waste wool/polypropylene composites (NFRP), J. Adhes. Interface, 9, 16-23 (2008).
  4. H. D. Rozman, S. H. Shannon-Ong, A. B. Azizah, and G. S. Tay, Preliminary study of non-woven composite: Effect of needle punching and kenaf fiber loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fiber, J. Polym. Environ., 21, 1032-1039 (2013). https://doi.org/10.1007/s10924-013-0599-6
  5. A. Ashori, Wood-plastic composites as promising green-composites for automotive industries!, Bioresour. Technol., 99, 4661-4667 (2008). https://doi.org/10.1016/j.biortech.2007.09.043
  6. D. H. Cho and H. J. Kim, Naturally cyclable biocomposites, Elast. Compos., 44, 13-21 (2009).
  7. J. H. Shim, D. H. Cho, and J. S. Yoon, Natural fiber and biocomposite, Polym. Sci. Technol., 19, 299-306 (2008).
  8. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000-2010, Prog. Polym. Sci., 37, 1552-1596 (2012). https://doi.org/10.1016/j.progpolymsci.2012.04.003
  9. F. Md. Salleh, A. Hassan, R. Yahya, and A. D. Azzahari, Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites, Composites B, 58, 259-266 (2014). https://doi.org/10.1016/j.compositesb.2013.10.068
  10. S. M. Batouli, Y. Zhu, M. Nar, and N. A. D'Souza, Environmental performance of kenaf-fiber reinforced polyurethane: a life cycle assessment approach, J. Clean. Prod., 66, 164-173 (2014). https://doi.org/10.1016/j.jclepro.2013.11.064
  11. S. Shibata, Y. Cao, and I. Fukumoto, Lightweight laminate composites made from kenaf and polypropylene fibres, Polym. Test., 25, 142-148 (2006). https://doi.org/10.1016/j.polymertesting.2005.11.007
  12. M. Bernard, A. Khalina, A. Ali, R. Janius, M. Faizal, K. S. Hasnah, and A. B. Sanuddin, The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite, Mater. Des., 32, 1039-1043 (2011). https://doi.org/10.1016/j.matdes.2010.07.014
  13. O. M. L. Asumani, R. G. Reid, and R. Paskaramoorthy, The effects of alkali-silane treatment on the tensile and flexural properties of short fiber non-woven kenaf reinforced polypropylene composites, Composites A, 43, 1431-1440 (2012). https://doi.org/10.1016/j.compositesa.2012.04.007
  14. N. Sgriccia, M. C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Composites A, 39, 1632-1637 (2008). https://doi.org/10.1016/j.compositesa.2008.07.007
  15. X. Li, L. G. Tabil, and S. Panigrahi, Chemical treatment of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ., 15, 25-33 (2007). https://doi.org/10.1007/s10924-006-0042-3
  16. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission, Compos. Sci. Technol., 66, 2686-2699 (2006). https://doi.org/10.1016/j.compscitech.2006.03.014
  17. H. S. Kim, B. H. Lee, S. W. Choi, S. M. Kim, and H. J. Kim, The effect of types of maleic anhydride-grafted polypropylene(MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Composites A, 38, 1473-1482 (2007). https://doi.org/10.1016/j.compositesa.2007.01.004
  18. K. D. Lee and W. K. Lee, A Development trend of bio-plastics in automotive, Auto J., 31, 44-51 (2009).
  19. D. Shi, J. H. Yang, Z. H. Yao, Y. Wang, H. L. Huang, W. Jing, J. H. Yin, and G. Costa, Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: Mechanism of melt grafting, Polymer, 42, 5549-5557 (2001). https://doi.org/10.1016/S0032-3861(01)00069-6
  20. Y. Li, X. M. Xie, and B. H. Guo, Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene, Polymer, 42, 3419-3425 (2001). https://doi.org/10.1016/S0032-3861(00)00767-9
  21. J. W. Lee, W. G. Kim, and Y. C. Kim, Effect of maleic anhydride greafted PP on the physical properties of PP/pulp composites, Polymer (Korea), 38, 566-572 (2014). https://doi.org/10.7317/pk.2014.38.5.566
  22. J. W. Lee, J. H. Kim, and Y. C. Kim, Effect of styrene and maleic anhydride content on properties of PP/pulp composites and reactive extrusion of random PP, Appl. Chem. Eng., 25, 318-323 (2014). https://doi.org/10.14478/ace.2013.1037
  23. K. W. Cho, F. Li, and J. S. Choi, Crystallization and melting behavior of polypropylene and maleated polypropylene blends, Polymer, 40, 1719-1729 (1999). https://doi.org/10.1016/S0032-3861(98)00404-2
  24. D. J. Lohse, S. T. Milner, L. J. Fetters, M. Xenidou, N. Hadjichristidis, R. A. Mendelson, C. A. Garcia-Franco, and M. K. Lyon, Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior, Macromolecules, 35, 3066-3075 (2002). https://doi.org/10.1021/ma0117559