DOI QR코드

DOI QR Code

Two-dimensional Assembly of Organically Functionalized Ag Nanoparticles at Air-water Interface

공기와 물이 형성하는 계면에서 발생하는 유기적으로 기능화된 은 나노 입자들의 2차원 조립

  • Chung, Sungwook (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 정성욱 (부산대학교 공과대학 화공생명공학부)
  • Received : 2017.01.06
  • Accepted : 2017.01.12
  • Published : 2017.02.10

Abstract

We report organically functionalized Ag nanoparticles spontaneously form two-dimensional (2D) novel superstructures at the air-water interface. Analysis of the superstructures suggests that the 2D assembly of Ag nanoparticles originates from a subtle interplay between characteristic inter-particle interactions that can be readily controlled by changing the sizes of nanoparticle metal core and surfactants. Such structures have potential uses in nanostructured functional materials, catalysis, and device applications.

본 연구에서는 유기적으로 기능화된 은 나노 입자들은 공기와 물이 형성하는 계면에서 자발적 조립 과정을 통해 새로운 2차원 상부 구조들(superstructures)을 생성하는 것을 발견하였다. 상부 구조의 분석은 금속 나노 입자의 심형과 입자계면에 결합된 유기 분자의 크기를 바꿈으로써 입자 간 특징적 상호 작용(characteristic inter-particle interaction)을 조절할 수 있고 이들 사이의 미묘한 상호 작용(subtle interplay)을 통해 은 나노 입자의 2차원 조립이 발생함을 시사한다. 본 연구를 통해 발견한 새로운 구조들은 기능성 나노 소재, 촉매 및 소자 응용 분야에 매우 중요한 잠재적 용도가 있을 것이라 사료된다.

Keywords

References

  1. R. Kerridge, 890. Melting-point diagrams for binary triglyceride systems, J. Chem. Soc., 4577-4579 (1952). https://doi.org/10.1039/jr9520004577
  2. A. A. Wheeler, W. J. Boettinger, and G. B. Mcfadden, Phase-field model for isothermal phase-transitions in binary-alloys, Phys. Rev. A, 45, 7424-7439 (1992). https://doi.org/10.1103/PhysRevA.45.7424
  3. S. Jamali, M. Yamanoi, and J. Maia, Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions, Soft Matter., 9, 1506-1515 (2013). https://doi.org/10.1039/C2SM27104D
  4. R. Koningsveld, W. H. Stockmayer, and E. Nies, Polymer Phase Diagrams: A Textbook, Oxford University Press, NC, USA (2001).
  5. R. A. Matkar, and T. Kyu, Phase diagrams of binary crystalline-crystalline polymer blends, J. Phys. Chem. B, 110, 16059-16065 (2006). https://doi.org/10.1021/jp062124p
  6. D. Andelman, F. Brochard, and J. F. Joanny, Phase-transitions in Langmuir monolayers of polar-molecules, J. Chem. Phys., 86, 3673-3681 (1987). https://doi.org/10.1063/1.451970
  7. D. Andelman, F. Brochard, C. Knobler, and F. Rondelez, In: W. M. Gelbart, A. Bhen-Shaul, and D. Roux (eds.). Micelles, Membranes, Microemulsions, and Monolayers, Springer-Verlag, Berlin, Germany (1994).
  8. D. J. Keller, H. M. Mcconnell, and V. T. Moy, Theory of superstructures in lipid monolayer phase-transitions, J. Phys. Chem., 90, 2311-2315 (1986). https://doi.org/10.1021/j100402a012
  9. H. Mohwald, Phospholipid and phospholipid-protein monolayers at the air/water interface, Annu. Rev. Phys. Chem., 41, 441-476 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002301
  10. A. J. Dickstein, S. Erramilli, R. E. Goldstein, D. P. Jackson, and S. A. Langer, Labyrinthine pattern-formation in magnetic fluids, Science, 261, 1012-1015 (1993). https://doi.org/10.1126/science.261.5124.1012
  11. R. E. Rosensweig, Magnetic Fluids, Sci. Am., 247, 124-132 (1982). https://doi.org/10.1038/scientificamerican1282-124
  12. D. Vanderbilt, Phase segregation and work-function variations on metal-surfaces - spontaneous formation of periodic domain-structures, Surf. Sci., 268, L300-L304 (1992). https://doi.org/10.1016/0039-6028(92)90939-4
  13. P. Zeppenfeld, M. Krzyzowski, C. Romainczyk, G. Comsa, and M. G. Lagally, Size relation for surface systems with long-range interactions, Phys. Rev. Lett., 72, 2737-2740 (1994). https://doi.org/10.1103/PhysRevLett.72.2737
  14. L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041
  15. G. L. Ge and L. Brus, Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly, J. Phys. Chem. B, 104, 9573-9575 (2000).
  16. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, Drying-mediated self-assembly of nanoparticles, Nature, 426, 271-274 (2003). https://doi.org/10.1038/nature02087
  17. U. Steiner, A. Meller, and J. Stavans, Entropy-driven phase-separation in binary emulsions, Phys. Rev. Lett., 74, 4750-4753 (1995). https://doi.org/10.1103/PhysRevLett.74.4750
  18. A. Karim, T. M. Slawecki, S. K. Kumar, J. F. Douglas, S. K. Satija, C. C. Han, T. P. Russell, Y. Liu, R. Overney, O. Sokolov, and M. H. Rafailovich, Phase-separation-induced surface patterns in thin polymer blend films, Macromolecules, 31, 857-862 (1998). https://doi.org/10.1021/ma970687g
  19. Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol., 5, 15-25 (2010). https://doi.org/10.1038/nnano.2009.453
  20. P. D. Yang and F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures, Chemphyschem., 3, 503-506 (2002). https://doi.org/10.1002/1439-7641(20020617)3:6<503::AID-CPHC503>3.0.CO;2-U
  21. L. Cademartiri, K. J. M. Bishop, P. W. Snyder, and G. A. Ozin, Using shape for self-assembly, Philos. T. R. Soc. A, 370, 2824-2847 (2012). https://doi.org/10.1098/rsta.2011.0254
  22. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system, J. Chem. Soc., Chem. Commun., 801-802 (1994).
  23. J. R. Heath, C. M. Knobler, and D. V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: The influence of particle size, size distribution, and surface passivant, J. Phys. Chem. B, 101, 189-197 (1997). https://doi.org/10.1021/jp9611582
  24. D. V. Leff, L. Brandt, and J. R. Heath, Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines, Langmuir, 12, 4723-4730 (1996). https://doi.org/10.1021/la960445u
  25. D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart, Thermodynamic control of gold nanocrystal size - experiment and theory, J. Phys. Chem., 99, 7036-7041 (1995). https://doi.org/10.1021/j100018a041
  26. G. Markovich, D. V. Leff, S.-W. Chung, H. M. Soyez, B. Dunn, and J. R. Heath, Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals, Appl. Phys. Lett., 70, 3107-3109 (1997). https://doi.org/10.1063/1.119105
  27. S.-W. Chung, G. Markovich, and J. R. Heath, Fabrication and alignment of wires in two dimensions, J. Phys. Chem. B, 102, 6685-6687 (1998). https://doi.org/10.1021/jp981441w
  28. R. P. Sear, S.-W. Chung, G. Markovich, W. M. Gelbart, and J. R. Heath, Spontaneous patterning of quantum dots at the air-water interface, Phys. Rev. E, 59, R6255-R6258 (1999). https://doi.org/10.1103/PhysRevE.59.R6255
  29. P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart, Crystallization of opals from polydisperse nanoparticles, Phys. Rev. Lett., 75, 3466-3469 (1995). https://doi.org/10.1103/PhysRevLett.75.3466
  30. V. S. Stubican and R. C. Bradt, Eutectic solidification in ceramic systems, Annu. Rev. Mater. Sci., 11, 267-297 (1981). https://doi.org/10.1146/annurev.ms.11.080181.001411
  31. H. M. Mcconnell, Structures and transitions in lipid monolayers at the air-water-interface, Annu. Rev. Phys. Chem., 42, 171-195 (1991). https://doi.org/10.1146/annurev.pc.42.100191.001131
  32. J.-F. Lemineur, N. Saci, and A. M. Ritcey, Impact of concentration and capping ligand length on the organization of metal nanoparticles in Langmuir-Blodgett surface micelles and nanostrands, Colloids Surf. A: Physicochem. Eng. Asp., 498, 88-97 (2016). https://doi.org/10.1016/j.colsurfa.2016.03.030
  33. S.-W. Yeh, K.-H. Wei, Y.-S. Sun, U. S. Jeng, and K. S. Liang, CdS nanoparticles induce a morphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packed cylinders to a lamellar structure, Macromolecules, 38, 6559-6565 (2005). https://doi.org/10.1021/ma047653a