DOI QR코드

DOI QR Code

Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms

  • Aulakh, Amritpal Singh (Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala) ;
  • Randhawa, Puneet Kaur (Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala) ;
  • Singh, Nirmal (Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala) ;
  • Jaggi, Amteshwar Singh (Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala)
  • Received : 2016.05.19
  • Accepted : 2016.08.18
  • Published : 2017.03.01

Abstract

Remote ischemic preconditioning (RIPC) is an intrinsic phenomenon whereby 3~4 consecutive ischemia-reperfusion cycles to a remote tissue (non-cardiac) increases the tolerance of the myocardium to sustained ischemia-reperfusion induced injury. Remote ischemic preconditioning induces the local release of chemical mediators which activate the sensory nerve endings to convey signals to the brain. The latter consequently stimulates the efferent nerve endings innervating the myocardium to induce cardioprotection. Indeed, RIPC-induced cardioprotective effects are reliant on the presence of intact neuronal pathways, which has been confirmed using nerve resection of nerves including femoral nerve, vagus nerve, and sciatic nerve. The involvement of neurogenic signaling has been further substantiated using various pharmacological modulators including hexamethonium and trimetaphan. The present review focuses on the potential involvement of neurogenic pathways in mediating remote ischemic preconditioning-induced cardioprotection.

Keywords

References

  1. Alhejily W, Aleksi A, Martin BJ, Anderson TJ. The effect of ischemia-reperfusion injury on measures of vascular function. Clin Hemorheol Microcirc. 2014;56:265-271.
  2. Randhawa PK, Bali A, Jaggi AS. RIPC for multiorgan salvage in clinical settings: evolution of concept, evidences and mechanisms. Eur J Pharmacol. 2015;746:317-332. https://doi.org/10.1016/j.ejphar.2014.08.016
  3. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893-899. https://doi.org/10.1161/01.CIR.87.3.893
  4. Kant R, Diwan V, Jaggi AS, Singh N, Singh D. Remote renal preconditioning-induced cardioprotection: a key role of hypoxia inducible factor-prolyl 4-hydroxylases. Mol Cell Biochem. 2008;312:25-31. https://doi.org/10.1007/s11010-008-9717-5
  5. Wang Y, Xu H, Mizoguchi K, Oe M, Maeta H. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res. 2001;49:391-398. https://doi.org/10.1016/S0008-6363(00)00266-2
  6. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106:2881-2883. https://doi.org/10.1161/01.CIR.0000043806.51912.9B
  7. Tokuno S, Hinokiyama K, Tokuno K, Löwbeer C, Hansson LO, Valen G. Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol. 2002;22:995-1001. https://doi.org/10.1161/01.ATV.0000017703.87741.12
  8. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemiareperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46:450-456. https://doi.org/10.1016/j.jacc.2005.04.044
  9. Candilio L, Malik A, Ariti C, Khan SA, Barnard M, Di Salvo C, Lawrence DR, Hayward MP, Yap JA, Sheikh AM, McGregor CG, Kolvekar SK, Hausenloy DJ, Yellon DM, Roberts N. A retrospective analysis of myocardial preservation techniques during coronary artery bypass graft surgery: are we protecting the heart? J Cardiothorac Surg. 2014;9:184. https://doi.org/10.1186/s13019-014-0184-7
  10. Ali N, Rizwi F, Iqbal A, Rashid A. Induced remote ischemic preconditioning on ischemia-reperfusion injury in patients undergoing coronary artery bypass. J Coll Physicians Surg Pak. 2010;20:427-431.
  11. Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol. 2010;105:651-655. https://doi.org/10.1007/s00395-010-0099-y
  12. Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008;79:377-386. https://doi.org/10.1093/cvr/cvn114
  13. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996;94:2193-2200. https://doi.org/10.1161/01.CIR.94.9.2193
  14. Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol. 2000;278:H1571-1576. https://doi.org/10.1152/ajpheart.2000.278.5.H1571
  15. Ding YF, Zhang MM, He RR. Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao. 2001;53:7-12.
  16. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol. 2002;283:H29-37. https://doi.org/10.1152/ajpheart.01031.2001
  17. Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res. 2002;55:583-589. https://doi.org/10.1016/S0008-6363(02)00408-X
  18. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting crossspecies protection. Clin Sci (Lond). 2009;117:191-200. https://doi.org/10.1042/CS20080523
  19. Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, Dai X, Manlhiot C, Li J, Redington AN. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol. 2012;107:241. https://doi.org/10.1007/s00395-011-0241-5
  20. Wong GT, Lu Y, Mei B, Xia Z, Irwin MG. Cardioprotection from remote preconditioning involves spinal opioid receptor activation. Life Sci. 2012;91:860-865. https://doi.org/10.1016/j.lfs.2012.08.037
  21. Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 2009;120(11 Suppl):S1-9. https://doi.org/10.1161/CIRCULATIONAHA.108.843938
  22. Donato M, Buchholz B, Rodriguez M, Perez V, Inserte J, Garcia-Dorado D, Gelpi RJ. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol. 2013;98:425-434. https://doi.org/10.1113/expphysiol.2012.066217
  23. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223-231. https://doi.org/10.1016/j.jtcvs.2008.08.020
  24. Kakinuma Y, Ando M, Kuwabara M, Katare RG, Okudela K, Kobayashi M, Sato T. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett. 2005;579:2111-2118. https://doi.org/10.1016/j.febslet.2005.02.065
  25. Oba T, Yasukawa H, Nagata T, Kyogoku S, Minami T, Nishihara M, Ohshima H, Mawatari K, Nohara S, Takahashi J, Sugi Y, Igata S, Iwamoto Y, Kai H, Matsuoka H, Takano M, Aoki H, Fukumoto Y, Imaizumi T. Renal nerve-mediated erythropoietin release confers cardioprotection during remote ischemic preconditioning. Circ J. 2015;79:1557-1567. https://doi.org/10.1253/circj.CJ-14-1171
  26. Diwan V, Jaggi AS, Singh M, Singh N, Singh D. Possible involvement of erythropoietin in remote renal preconditioning-induced cardioprotection in rats. J Cardiovasc Pharmacol. 2008;51:126-130. https://doi.org/10.1097/FJC.0b013e31815d88c9
  27. Dong JH, Liu YX, Ji ES, He RR. Limb ischemic preconditioning reduces infarct size following myocardial ischemia-reperfusion in rats. Sheng Li Xue Bao. 2004;56:41-46.
  28. Jensen RV, Stottrup NB, Kristiansen SB, Botker HE. Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol. 2012;107:285. https://doi.org/10.1007/s00395-012-0285-1
  29. Song Y, Ye YJ, Li PW, Zhao YL, Miao Q, Hou DY, Ren XP. The cardioprotective effects of late-phase remote preconditioning of trauma depends on neurogenic pathways and the activation of PKC and NF-${\kappa}B$ (But Not iNOS) in mice. J Cardiovasc Pharmacol Ther. 2016;21:310-319. https://doi.org/10.1177/1074248415609435
  30. Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, Dai X, Manlhiot C, Li J, Redington AN. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol. 2012;107:241. https://doi.org/10.1007/s00395-011-0241-5
  31. Vignaud A, Hourde C, Medja F, Agbulut O, Butler-Browne G, Ferry A. Impaired skeletal muscle repair after ischemia-reperfusion injury in mice. J Biomed Biotechnol. 2010;2010:724914.
  32. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47:2277-2282. https://doi.org/10.1016/j.jacc.2006.01.066
  33. Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, Hoole SP. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. 2013;6:246-251. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000184
  34. Deng QW, Xia ZQ, Qiu YX, Wu Y, Liu JX, Li C, Liu KX. Clinical benefits of aortic cross-clamping versus limb remote ischemic preconditioning in coronary artery bypass grafting with cardiopulmonary bypass: a meta-analysis of randomized controlled trials. J Surg Res. 2015;193:52-68. https://doi.org/10.1016/j.jss.2014.10.007
  35. Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, Wolf B, Goebel U, Schwer CI, Rosenberger P, Haeberle H, Görlich D, Kellum JA, Meersch M. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313:2133-2141. https://doi.org/10.1001/jama.2015.4189
  36. Robertson FP, Goswami R, Wright GP, Fuller B, Davidson BR. Protocol for a prospective randomized controlled trial of recipient remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial). Transplant Res. 2016;5:4. https://doi.org/10.1186/s13737-016-0033-4
  37. Wu J, Feng X, Huang H, Shou Z, Zhang X, Wang R, Chen Y, Chen J. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res. 2014;188:303-308. https://doi.org/10.1016/j.jss.2013.06.058
  38. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol. 2007;292:H1764-1769. https://doi.org/10.1152/ajpheart.01071.2006
  39. Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Cacciatore F, Longobardi G, Rengo F. Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol. 1996;27:1777-1786. https://doi.org/10.1016/0735-1097(96)00070-8
  40. Vasile VC, Babuin L, Giannitsis E, Katus HA, Jaffe AS. Relationship of MRI-determined infarct size and cTnI measurements in patients with ST-elevation myocardial infarction. Clin Chem. 2008;54:617-619. https://doi.org/10.1373/clinchem.2007.095604
  41. Longobardi G, Abete P, Ferrara N, Papa A, Rosiello R, Furgi G, Calabrese C, Cacciatore F, Rengo F. "Warm-up" phenomenon in adult and elderly patients with coronary artery disease: further evidence of the loss of "ischemic preconditioning" in the aging heart. J Gerontol A Biol Sci Med Sci. 2000;55:M124-129. https://doi.org/10.1093/gerona/55.3.M124
  42. Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Ueda K, Noma K, Yumoto A, Nishioka K. Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction. Am Heart J. 2000;139:881-888. https://doi.org/10.1016/S0002-8703(00)90021-8
  43. Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Botker HE. Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res . 2013;97:369-378. https://doi.org/10.1093/cvr/cvs337
  44. Lee JH, Park YH, Byon HJ, Kim HS, Kim CS, Kim JT. Effect of remote ischaemic preconditioning on ischaemic-reperfusion injury in pulmonary hypertensive infants receiving ventricular septal defect repair. Br J Anaesth. 2012;108:223-228. https://doi.org/10.1093/bja/aer388
  45. Loubani M, Fowler A, Standen NB, Galinanes M. The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. Eur J Pharmacol. 2005;515:142-149. https://doi.org/10.1016/j.ejphar.2005.04.002
  46. Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2014;147:376-382. https://doi.org/10.1016/j.jtcvs.2013.01.005

Cited by

  1. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms vol.809, pp.None, 2017, https://doi.org/10.1016/j.ejphar.2017.05.033
  2. Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis vol.9, pp.None, 2018, https://doi.org/10.3389/fneur.2018.00475
  3. Late Phases of Cardioprotection During Remote Ischemic Preconditioning and Adenosine Preconditioning Involve Activation of Neurogenic Pathway : vol.73, pp.2, 2017, https://doi.org/10.1097/fjc.0000000000000634
  4. Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms vol.75, pp.1, 2017, https://doi.org/10.1007/s13105-019-00664-w
  5. A Review of Humoral Factors in Remote Preconditioning of the Heart vol.24, pp.5, 2017, https://doi.org/10.1177/1074248419841632
  6. Exploring the role of neurogenic pathway-linked cholecystokinin release in remote preconditioning-induced cardioprotection vol.35, pp.9, 2020, https://doi.org/10.1590/s0102-865020200090000006
  7. Hepatic Remote Ischemic Preconditioning (RIPC) Protects Heart Damages Induced by Ischemia Reperfusion Injury in Mice vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.713564